Preview

PULMONOLOGIYA

Advanced search

Antibiotic-induced oxidative stress and antibiotic resistance

https://doi.org/10.18093/0869-0189-2017-27-5-664-671

Abstract

This is a review of published data on oxidative stress-induced antibiotic resistance of pathogens caused by antimicrobials. Known mechanisms of oxidative stress in a bacterial cell include occurrence of oxygen reactive species, protein oxidation products, fat acids, intracellular molecular oxygen and transition metal ions. Investigations of bacterial antioxidant defense under antibiotic-induced oxidative stress are at an early stage. Understanding the relationship between oxidative stress and bacterial resistance to antibiotics could facilitate development of novel antimicrobials due to both stimulation of oxidation properties of antimicrobials and searching new ways for inhibition of antioxidant defense of pathogens.

About the Authors

L. B. Postnikova
Nizhniy Novgorod Regional City Teaching Hospital No.38
Russian Federation

 

Doctor of Medicine, Associate Professor

tel.: 910-390-64-37

ul. Chernyshevskogo 22, Nizhniy Novgorod, 603000, Russia



S. K. Soodaeva
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia
Russian Federation

 

Doctor of Medicine, Professor, Head of Laboratory of Clinical and Experimental Biophysics

 

Professor at Department of Human Pathology

 

tel.: 495-465-52-64

ul. Odinnadtsataya Parkovaya 32, build. 4, Moscow, 105077, Russia

ul. Trubetskaya 8, build. 2, Moscow, 119991, Russia



I. A. Klimanov
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

Candidate of Medicine, Senior Researcher at Laboratory of Clinical and Experimental Biophysics

tel.: 495-465-52-64

ul. Odinnadtsataya Parkovaya 32, build. 4, Moscow, 105077, Russia



N. I. Kubysheva
Kazan (Volga region) Federal University, Kazan University the Ministry of education and science of the Russian Federation
Russian Federation

 

Doctor of Biology, Senior Researcher of the Research Laboratory "Health Informatics"

 

tel.: (910) 796-98-38

ul. Kremlevskaja 18, Kazan', 420000, Tatarstan Republic, Russia



K. I. Afinogenov
Federal Teaching Hospital No.123, Federal State Research and Clinical Center of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia
Russian Federation

 

Pulmonologist

 

tel.: (919) 969-19-90

Krasnogorskoe shosse 15, Odintsovo of Moscow region, 143003, Russia



M. V. Glukhova
I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia
Russian Federation

 

Postgraduate student at Department of Human Pathology

 

tel.: (985) 641-17-63

ul. Trubetskaya 8, build. 2, Moscow, 119991, Russia



L. Yu. Nikitina
Khanty-Mansiyskaya State Medical Academy
Russian Federation

 

Doctor of Medicine, Head of Department of Therapy

 

tel.: 908-882-86-20

ul. Mira 40, Khanty-Mansiysk, 628007, Russia



References

1. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929; 10: 226–236.

2. Walsh C. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003; 1 (1): 65–70. DOI: 10.1038/nrmicro727.

3. Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010; 74 (3): 417–433. DOI: 10.1128/MMBR.00016-10.

4. Wright G.D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007; 5 (3): 175–186. DOI: 10.1038/nrmicro1614.

5. Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007; 128 (6): 1037–1050. DOI: 10.1016/j.cell.2007.03.004.

6. Kohanski M.A., Dwyer D.J., Hayete B. et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130 (5): 797–810. DOI: 10.1016/j.cell.2007.06.049.

7. Kohanski M.A., Dwyer D.J., Wierzbowski J. et al. Mistranslation of membrane proteins and two-component system activation trigger aminoglycoside-mediated oxidative stress and cell death. Cell. 2008; 135 (4): 679–690. DOI: 10.1016/j.cell.2008.09.038.

8. Yeom J., Imlay J.A., Park W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J. Biol. Chem. 2010; 285 (29): 22689–22695. DOI: 10.1074/jbc.M110.127456.

9. Dwyer D.J., Kohanski M.A., Collins J.J. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 2009; 12 (5): 482–489. DOI: 10.1016/j.mib.2009.06.018.

10. Marrakchi M., Liu X., Andreescu S. Oxidative stress and antibiotic resistance in bacterial pathogens: state of the art, methodologies, and future trends. Adv. Exp. Med. Biol. 2014; 806: 483–498. DOI: 10.1007/978-3-319-06068-2_23.

11. Khurtsilava O. G., Pluzhnikov N. N., Nakatis Ya. A. (eds.). Oxidative stress and inflammation: pathogenic parthnership. Saint-Petersburg: Izdatel'stvo SZGMU im. I.I.Mechnikova; 2012 (in Russian).

12. Foti J., Devadoss B., Winkler J.A. et al. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012; 336 (6079): 315–319. DOI: 10.1126/science.1219192.

13. Dwyer D.J., Belenky P.A., Yang J.H. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 2014; 111 (20): 2100–2109. DOI: 10.1073/pnas.1401876111.

14. Oktyabr'skiy O.N., Muzyka N.G., Ushakov V.Yu., Smirnova G.V. A role of thiol redox systems for Escherichia coli response to peroxide-induced oxidative stress. Mikrobiologiya. 2007; 76: 1–7 (in Russian).

15. Murphy M.P., Holmgren A., Larsson N.G. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011; 13 (4): 361–366. DOI: 10.1016/j.cmet.2011.03.010.

16. Albesa I., Becerra M.C., Battán P.C., Páez P.L. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 2004; 317 (2): 605–609. DOI: 10.1016/j.bbrc.2004.03.085.

17. Grant S.S., Kaufmann B.B., Chand N.S. et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA. 2012; 109 (30): 12147–12152. DOI: 10.1073/pnas.1203735109.

18. Goswami M., Mangoli S.H., Jawali N. Involvement of reactive oxygen species in the action of ciprofl oxacin against Escherichia coli. Antimicrob. Agents Chemother. 2006; 50 (3): 949–954. DOI: 10.1128/AAC.50.3.949-954.2006.

19. Nesterova L.Yu., Akhova A.V., Shumkov M.S., Tkachenko A.G. DNA-protecting properties of polyamines as a factor of Escherichia coli resistance to levofloxacin. Vestnik Permskogo universiteta. Seriya biologiya. 2016; 1: 54–59 (in Russian).

20. Dwyer D.J., Kohanski M.A., Hayete B., Collins J.J.Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 2007; 3 (1): 91. DOI: 10.1038/msb4100135.

21. de Arruda Grossklaus D., Bailão A.M., Vieira Rezende T.C. et al. Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect. 2013; 15 (5): 347–364. DOI: 10.1016/j.micinf.2012.12.002.

22. Dosselli R., Millioni R., Puricelli L. et al. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J. Proteomics. 2012; 77: 329–343. DOI: 10.1016/j.jprot.2012.09.007.

23. Huang C.H., Chiou S.H. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J. Med. Sci. 2011; 27 (12): 544–553. DOI: 10.1016/j.kjms.2011.06.019.

24. Deng X., Weerapana E., Ulanovskaya O. et al. Proteome-wide quantification and characterization of oxidation-sensitive сysteines in pathogenic bacteria. Cell Host Microbe. 2013; 13 (3): 358–370. DOI: 10.1016/j.chom.2013.02.004.

25. Kalyanaraman B., Darley-Usmar V., Davies K.J. et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 2012; 52 (1): 1–6. DOI: 10.1016/j.freeradbiomed.2011.09.030.

26. Van Acker H., Gielis J., Acke M. et al. The Role of reactive oxygen species in antibiotic-induced cell death in Burkholderia cepacia complex bacteria. PLoS One. 2016; 11 (7): e0159837. DOI: 10.1371/journal.pone.0159837.

27. Nikolaev Yu.A., Plakunov V.K. Biofilm as a «microbial town» or an equivalent of a multicellular organism. Mikrobiologiya. 2007; 76: 149–163 (in Russian).

28. Holden J.K., Li H., Jing Q. et al. Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proc. Natl. Acad. Sci. USA. 2013; 110 (45): 18127–18131. DOI: 10.1073/pnas.1314080110.

29. Liu J.H., Wang W., Wu H. et al. Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant. Sci. 2015; 6: 827. DOI: 10.3389/fpls.2015.00827.


Review

For citations:


Postnikova L.B., Soodaeva S.K., Klimanov I.A., Kubysheva N.I., Afinogenov K.I., Glukhova M.V., Nikitina L.Yu. Antibiotic-induced oxidative stress and antibiotic resistance. PULMONOLOGIYA. 2017;27(5):664-671. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-5-664-671

Views: 1324


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)