Bioelectric properties of respiratory epithelium in cystic fibrosis patients
Abstract
Cystic fibrosis (OF) is characterized by disorders of chloride secretion and sodium absorption in exocrine epithelium. A crucial location of these ion disorders is the respiratory epithelium. Such ion pathology forms a transepithelial electric potential difference. It is hard to measure tracheobronchial electric potential difference, so a method for measuring nasal potential difference (NPD) was created.
We measured baseline values of NPD in 100 patients (including 45 OF patients) and in 15 healthy volunteers. More significant negative values of the average baseline NPD were registered in the OF patients (42.2±1.4 mV) compared with healthy and COPD persons (-18.3±1.8 and 19.2±0.6 mV accordingly, p<0.0001). NPD values in 6 (13%) OF patients with typical clinical features, normal or boundary sweat test results and CF gene confirmation were compatible with CF bioelectric profile. Meantime 3 COPD patients had increased sweatiest results and a low NPD level.
Under amiloride hydrochloride blocking sodium channels the basal NPD was inhibited greatly (up to 66%) in CF patients, whereas the same value in COPD patients was 36.7%.Therefore, the NPD reflects the principal CF disorder. Its increase under the amiloride influence more than 60% is thought to be used as an additional diagnostic test.
About the Authors
E. N. MitkinaRussian Federation
T. E. Gembitskaya
Russian Federation
L. A. Zhelenina
Russian Federation
A. G. Chermensky
Russian Federation
A. V. Orlov
Russian Federation
E. K. Dotsenko
Russian Federation
References
1. Мишкина Е.Н., Гембицкая Т.Е., Фокина А Л . и др. Измерение разности назальных потенциалов — новый, информативный тест для диагностики муковисцидоза. Пульмонология 1999; 3: 48—51.
2. Орлов С.Н., Баранова И.А., Чучалин А.Г. Внутриклеточные системы сигнализации и патология легких. Транспорт ионов в клетках эпителия дыхательных путей. Там же. 1: 77—84.
3. Boucher R.C. Human airway ion transport. Part II. Am. J. Respir. Crit. Care Med. 1994; 150: 581—593.
4. Boucher R.C. Sta tu s of gene therapy for cystic fibrosis lung disease. J. Clin. Invest. 1999; (103) 4: 441—445.
5. Davis P.B., Drumm М., Konstan M. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 1996; 154: 1229—1256.
6. Knowles M.R., Carson J.L., Collier A.M. Measurements of nasal transepitheial electric potential differences in normal subjects in vivo. Am. Rev. Respir. Dis. 1981; 124: 484—490.
7. Knowles M.R., Olover K.N., Hohneker R. W. et al. Pharmacologic treatment of abnormal ion transport in airway epithelium in cystic fibrosis. Chest. 1995; 107 (suppl.2): 71S—76S.
8. Quinton P.M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990; 4: 2709—2717.
Review
For citations:
Mitkina E.N., Gembitskaya T.E., Zhelenina L.A., Chermensky A.G., Orlov A.V., Dotsenko E.K. Bioelectric properties of respiratory epithelium in cystic fibrosis patients. PULMONOLOGIYA. 2001;(3):24-26. (In Russ.)