Clinical and biochemical aspects of development of bronchial obstruction in asthma
https://doi.org/10.18093/0869-0189-2008-0-2-52-57
Abstract
The aim of this study was to investigate NO- and lipid peroxidation (LPO)-related airway reactivity and its correlation to ventilation disorders in different clinical variants of asthma. NO, malone dialdehyde, IL-4, TNF-α, and IgE were measured in BAL fluid and blood serum of 39 asthma patients and 15 healthy volunteers matched for age and gender.
In patients with stable asthma, airflow parameters in small and medium airways were significantly decreased compared to those of healthy persons. Concentrations of key cytokines of atopic inflammation in BAL fluid and serum were increased in asthma patients. Serum IgE tended to decrease and IL-4 and TNF-α in BAL fluid increased in asthma patients while the disease worsened. Inverse correlations were found between NO and TNF-α, malone dialdehyde concentration and parameters of bronchial obstruction.
In conclusion, NO production in airways is caused by strong accumulation of inflammatory cells with high metabolic activity resulting in release of inflammatory and pro-inflammatory cytokines which regulate immunopathological reagine-induced inflammation.
About the Authors
O. V. KozinaRussian Federation
V. V. Andrushkevich
Russian Federation
A. E. Sazonov
Russian Federation
I. V. Petrova
Russian Federation
V. A. Egorov
Russian Federation
E. V. Komyakova
Russian Federation
N. N. Chusova
Russian Federation
M. S. Yusubov
Russian Federation
L. M. Ogorodova
Russian Federation
References
1. Barnes P.J. The role inflammation and anti-inflammatory medication in asthma. Respir. Med. 2002; 96: 9–15.
2. Kharitonov S.A., Gonio F., Kelly C. et al. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur. Respir. J. 2003; 21: 433–438.
3. Ricciardolo F.M. Multiple role of nitric oxide in the airways. Thorax 2003; 58: 175–182.
4. Юлдашева И.А., Арипова М.И. Роль оксида азота и процессов липопероксидации в формировании обструкции бронхов при бронхиальной астме. Клин. и лаб. диагн. 2003; 5: 3–5.
5. Berlyne G.S., Parameswaran K., Kamada D. et al. A comparison of exhaled nitric oxide and induced sputum as markers of airway inflammation. J. Allergy Clin. Immunol. 2000; 106: 638–644.
6. Ho L.P., Wood F.T., Robson A. et al. Atopy influences exhaled nitric oxide levels in adult asthmatics. Chest 2000; 118: 1327–1331.
7. Scollo M., Zanconato S., Ongaro R. et al. Exhaled nitric oxide and exercise-induced bronchoconstriction in asthmatic children. Am. J. Respir. Crit. Care Med. 2000; 161: 1047–1050.
8. Sippel J.M., Holden W.E., Tilles S.A. et al. Exhaled nitric oxide levels correlate with measures of disease control in asthma. J. Allergy Clin. Immunol. 2000; 106: 645–650.
9. Terada A., Fujisawa T., Togashi K. et al. Exhaled nitric oxide decreases during exercise-induced bronchoconstriction in children with asthma. Am. J. Respir. Crit. Care Med. 2001; 164: 1879–1884.
10. Болевич С.И., Даниляк И.К., Коган А.Х. и др. Роль свободно-радикальных процессов в патогенезе бронхиальной астмы. Пульмонология 1995; 1: 18–23.
11. Варшавский Б.Я., Трубников Г.В., Галактионова Л.П. и др. Оксидантно-антиоксидантный статус больных бронхиальной астмой при ингаляционной и системной глюкокортикоидной терапии. Тер. арх. 2003; 3: 21–24.
12. Кокосов А.Н., Гольденберг Ю.М., Мищенко В.П. Перекисное окисление липидов и гемостаз на этапах формирования хронического бронхита и бронхиальной астмы. Пульмонология 1995; 1: 38–42.
13. Valko M., Leibfritz D., Moncol J. et. al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007; 39 (1): 44–84.
14. Di Maria G.U., Spicuzza L., Mistretta A., Mazzarella G. Role of endogenous nitric oxide in asthma. Allergy 2000; 55: 31–35.
15. Recommendations for standardized procedures for the online and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children 1999: this official statement of the American Thoracic Society was adopted by the ATS Board of Directors. Am. J. Respir. Crit. Care Med. 1999. 160: 2104–2117.
16. Buckova D., Holla L.I., Vasku A. et. al. Lack of association between atopic asthma and the tumor necrosis factor alpha308 gene polymorphism in a Czech population. J. Invest. Allergol. Clin. Immunol. 2002; 12: 192–197.
17. Cardinale F., de Benedictis F.M, Muggeo V. et. al. Exhaled nitric oxide, total serum IgE and allergic sensitization in childhood asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2005. 16: 236–242.
18. Lane C., Knight D., Burgess S. et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004; 59: 757–760.
19. Bacharier L.B., Geha R.S. Molecular mechanisms of IgE regulation. J. Allergy Clin. Immunol. 2000; 105 (2, pt 2): 547–558.
20. Chung K.F. Barnes P.J. Cytokines in asthma. Thorax 1999; 54: 825–857.
21. Marsh D.G., Neely J.D., Breazeale D.R. et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264: 1152–1156.
22. Palmer L.J., Burton P.R., Faux J.A. et al. Independent inheritance of serum immunoglobulin E concentrations and airway responsiveness. Am. J. Respir. Crit. Care Med. 2000; 161: 1836–1843.
23. Казначеев В.А., Гервазиев Ю.В. Роль полиморфизма генов цитокинов и их рецепторов в развитии атопической бронхиальной астмы 2004; 5 (1): 73–84.
24. De Sanctis G.T., MacLean, J.A., Hamada K. et al. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J. Exp. Med. 1999; 189: 1621–1630.
25. Trifilieff A., Fujitani Y., Mentz F. et al. Inducible nitric oxide synthase inhibitors suppress airway inflammation in mice through down-regulation of chemokine expression. J. Immunol. 2000; 165: 1526–1533.
26. Global strategy for asthma management and prevention. Global initiative for asthma. NIH Publication number 013659 NHLBI/WHO. National Institutes of Health; 2002.
27. Карпищенко А.И. Медицинские технологии. М: Наука; 1999; т. 2.
Review
For citations:
Kozina O.V., Andrushkevich V.V., Sazonov A.E., Petrova I.V., Egorov V.A., Komyakova E.V., Chusova N.N., Yusubov M.S., Ogorodova L.M. Clinical and biochemical aspects of development of bronchial obstruction in asthma. PULMONOLOGIYA. 2008;(2):52-57. (In Russ.) https://doi.org/10.18093/0869-0189-2008-0-2-52-57