Preview

Пульмонология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Протективное действие беклометазона дипропионата при моделировании хронической обструктивной болезни легких

https://doi.org/10.18093/0869-0189-2020-30-1-61-68

Полный текст:

Аннотация

Целью исследования явилась оценка протективного эффекта применения ингаляционного глюкокортикостероида беклометазона дипропионата (БДП) на экспериментальной модели хронической обструктивной болезни легких (ХОБЛ). Материалы и методы. Модель ХОБЛ воспроизводилась у крыс (n = 30) в процессе дискретного 60-дневного воздействия диоксида азота; 9 особей составили интактную группу. В течение 60 дней у крыс опытной группы (n = 15) проводились ингаляции БДП (50 мкг через день), контрольной (n = 15) ингаляции плацебо. Определялись клеточный состав и цитокинферментный профиль бронхоальвеолярной лаважной жидкости (БАЛЖ), содержание в ней секреторного иммуноглобулина А (sIgA) и сурфактантного протеина D (СП-D) методом ELISA. Выполнялось гистологическое и морфометрическое исследование легких. Результаты. В группе плацебо определялись характерные для ХОБЛ патоморфологические изменения в легких, возрастало содержание клеток воспаления и провоспалительных медиаторов в БАЛЖ, ухудшались показатели функциональной активности бронхоальвеолярного эпителия (СП-D, sIgA). В группе животных, получавших БДП, отмечалась отчетливая тенденция к снижению активности нейтрофильно-лимфоцитарного воспаления с нормализацией профиля провоспалительных цитокинов и ферментов в БАЛЖ; также наблюдалось восстановление морфологической структуры бронхоальвеолярного эпителия и улучшение показателей его функциональной активности. Заключение. Применение БДП у крыс с экспериментальной моделью ХОБЛ оказывало выраженное противовоспалительное действие, сопряженное с активацией процессов физиологической репарации в легких, проявляющейся восстановлением структурной, иммунобарьерной целостности и функциональной активности бронхоальвеолярного эпителия.

Об авторах

О. Н. Титова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия

Титова Ольга Николаевна – д. м. н., профессор, директор Научно-исследовательского института пульмонологии

197022, Санкт-Петербург, ул. Льва Толстого, 6–8
тел.: (812) 338-78-40 



Н. А. Кузубова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия

Кузубова Наталия Анатольевна – д. м. н., заместитель директора Научно-исследовательского института пульмонологии

197022, Санкт-Петербург, ул. Льва Толстого, 6–8
тел.: (812) 338-66-16 



Е. С. Лебедева
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия

Лебедева Елена Сергеевна – к. б. н., ведущий научный сотрудник Научно-исследовательского института пульмонологии

197022, Санкт-Петербург, ул. Льва Толстого, 6–8
тел.: (812) 338-78-20 



Список литературы

1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2019 Report. Available at: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018WMS.pdf [Accessed: September 6, 2019].

2. Rutgers S.R., Postma D.S., ten Hacken N.H. et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax. 2000; 55 (1): 12–18. DOI:10.1136/thorax.55.1.12.

3. Barnes P.J. Inhaled corticosteroids in COPD: a controversy. Respiration. 2010; 80 (2): 89–95. DOI: 10.1159/000315416.

4. Aisanov Z., Avdeev S., Arkhipov V. et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 183–187. DOI: 10.2147/COPD.S153770.

5. Agusti A., Fabbri L.M., Singh D. et al. Inhaled corticosteroids in COPD: friend or foe? Eur. Respir. J. 2018; 52 (6). pii: 1801219. DOI: 10.1183/13993003.01219-2018.

6. Cataldo D., Derom E., Liistro G. et al. Overuse of inhaled corticosteroids in COPD: five questions for withdrawal in daily practice. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 2089–2099. DOI: 10.2147/COPD.S164259.

7. Crim C., Calverley P.M.A., Anderson J.A. et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur. Respir. J. 2009; 34 (3): 641–647. DOI: 10.1183/09031936.00193908.

8. Vanfleteren L., Fabbri L.M., Papi A. et al. Triple therapy (ICS/LABA/LAMA) in COPD: time for a reappraisal. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 3971–3981. DOI: 10.2147/COPD.S185975.

9. Thomas B.J., Porritt R.A., Hertzog P.J. et al. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Sci. Rep. 2014; 4: 7176. DOI: 10.1038/srep07176.

10. Contoli M., Pauletti A., Rossi M.R. et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur. Respir. J. 2017; 50 (4): 1700451. DOI: 10.1183/13993003.00451-2017.

11. Pavord I.D., Lettis S., Locantore N. et al. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax. 2016; 71 (2): 118–125. DOI: 10.1136/thoraxjnl-2015-207021.

12. Bafadhel M., Pavord I.D., Russell R.E.K. Eosinophils in COPD: just another biomarker? Lancet Respir. Med. 2017; 5 (9): 747–759. DOI: 10.1016/S2213-2600(17)30217-5.

13. Barnes P.J. Role of HDAC2 in the pathophysiology of COPD. Annu. Rev. Physiol. 2009; 71: 451–464. DOI: 10.1146/annurev.physiol.010908.163257.

14. Hoonhorst S.J.M., ten Hacken N.H.T., Vonk J.M. et al. Steroid resistance in COPD? Overlap and differential antiinflammatory effects in smokers and ex-smokers. PLoS One. 2014; 9 (2): e87443. DOI: 10.1371/journal.pone.0087443.

15. Sims M.W., Tal-Singer R.M., Kierstein S. et al. Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study. Respir. Res. 2008; 9: 13. DOI: 10.1186/1465-9921-9-13.

16. Lebedeva E.S., Kuzubova N.A., Danilov L.N. et al. Experimental modelling of chronic obstructive pulmonary disease. Bull. Exp. Biol. Med. 2012; 152 (5): 659–663. DOI: 10.1007/s10517-012-1601-3.

17. Федин А.Н., Кузубова Н.А., Данилов Л.Н., Лебедева Е.С. Нарушение функции нервных структур дыхательных путей у ингалированных диоксидом азота крыс. Российский физиологический журнал им. И.М.Сеченова. 2007; 93 (9): 1071–1077.

18. Федин А.Н., Кузубова Н.А., Данилов Л.Н. и др. Бронхолитический эффект преднизолона у крыс, ингалированных диоксидом азота. Российский физиологический журнал им. И.М.Сеченова. 2010; 96 (3): 293–300.

19. Кузубова Н.А., Федин А.Н., Лебедева Е.С., Платонова И.С. Влияние различных вариантов терапии на сокращение бронхов крыс с моделированной обструктивной болезнью легких. Российский физиологический журнал им. И.М.Сеченова. 2014; 100 (9): 1049–1058.

20. Ueki S., Melo R.C.N., Ghiran I. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013; 121 (11): 2074–2083. DOI: 10.1182/blood-2012-05-432088.

21. Ueki S., Tokunaga T., Fujieda S.et al. Eosinophil Etosis and DNA traps: a new look at eosinophilic inflammation. Curr. Allergy Asthma Rep. 2016; 16 (8): 54. DOI: 10.1007/s11882016-0634-5.

22. Uribe Echevarría L., Leimgruber C., Garcia González J. et al. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease? Int. J. COPD. 2017; 12: 885–896. DOI: 10.2147/COPD.S115969.

23. Snoeck-Stroband J.B., Lapperre T.S., Sterk P.J. et al. Prediction of long-term benefits of inhaled steroids by phenotypic markers in moderate-to-severe COPD: a randomized controlled trial. PLoS One. 2015; 10 (12): e0143793. DOI: 10.1371/journal.pone.0143793.

24. Russo P., Tomino C., Santoro A. et al. FKBP5 rs4713916: a potential genetic predictor of interindividual different response to inhaled corticosteroids in patients with chronic obstructive pulmonary disease in a real-life setting. Int. J. Mol. Sci. 2019; 20 (8): pii: Е2024. DOI: 10.3390/ijms20082024.

25. Cosío B.G., Jahn A., Iglesias A. et al. Haemophilus influenzae induces steroid-resistant inflammatory responses in COPD. BMC Pulm. Med. 2015; 15: 157. DOI: 10.1186/s12890-015-0155-3.

26. Ito K., Lim S., Caramori G. et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc. Natl. Acad. Sci. USA. 2002; 99 (13): 8921–8926. DOI: 10.1073/pnas.132556899.

27. Kobayashi Y., Wada H., Rossios C. et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3kinase pathway inhibition. Br. J. Pharmacol. 2013; 169 (5): 1024–1034. DOI: 10.1111/bph.12187.

28. Pirina P., Foschino Barbaro M.P., Paleari D., Spanevello A. Small airway inflammation and extrafine inhaled corticosteroids plus long-acting beta2-agonists formulations in chronic obstructive pulmonary disease. Respir. Med. 2018; 143: 74–81. DOI: 10.1016/j.rmed.2018.08.013.

29. Лещенко И.В., Куделя Л.М., Игнатова Г.Л. и др. Резолюция совета экспертов «Место противовоспалительной терапии при ХОБЛ в реальной клинической практике» от 8 апреля 2017 г., Новосибирск. Русский медицинский журнал. 2017; 25 (18): 1322–1324.

30. De Backer J., Vos W., Vinchurkar S. et al. The effects of extrafine beclometasone/formoterol (BDP/F) on lung function, dyspnea, hyperinflation, and airway geometry in COPD patients: novel insight using functional respiratory imaging. J. Aerosol. Med. Pulm. Drug Deliv. 2015; 28 (2): 88–99. DOI: 10.1089/jamp.2013.1064.

31. Postma D.S., Roche N. Colice G. et al. Comparing the effectiveness of small-particle versus large-particle inhaled corticosteroid in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 1163–1186. DOI: 10.2147/COPD.S68289.

32. Papi A., Vestbo J., Fabbri L. et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018; 391 (10125): 1076–1084. DOI: 10.1016/S0140-6736(18)30206-X.


Для цитирования:


Титова О.Н., Кузубова Н.А., Лебедева Е.С. Протективное действие беклометазона дипропионата при моделировании хронической обструктивной болезни легких. Пульмонология. 2020;30(1):61-68. https://doi.org/10.18093/0869-0189-2020-30-1-61-68

For citation:


Titova O.N., Kuzubova N.A., Lebedeva E.S. The protective effect of beclomethasone dipropionate in the modeling of chronic obstructive pulmonary disease. PULMONOLOGIYA. 2020;30(1):61-68. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-1-61-68

Просмотров: 126


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)