Nitrosative and oxidative stresses in respiratory diseases
https://doi.org/10.18093/0869-0189-2017-27-2-262-273
Abstract
Respiratory diseases are accompanied by activation of free radical-related processes with enhancement and subsequent suppression of different parts of antioxidant defense. This could result in development of oxidative and nitrosative stresses. General mechanisms of development of oxidative and nitrosative stresses in respiratory diseases as well as antioxidant defense of respiratory system have been described in this review. Markers of oxidative and nitrosative stresses in different respiratory pathology were investigated. Oxidative and nitrosative stresses are multi-level processes with intricate regulation which are closely related to other physiological and pathophysiological processes. Investigation of mechanisms of oxidative and nitrosative stresses could improve diagnostics and contribute to development of new therapeutic approaches and agents.
About the Authors
S. K. SoodaevaRussian Federation
Svetlana K. Soodaeva, Doctor of Medicine, Professor, Head of Laboratory of Clinical and Experimental Biophysics, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; Professor at Department of Human Pathology, Institute of Professional Education, I.M.Sechenov First Moscow State Medical University
I. A. Klimanov
Russian Federation
Igor' A. Klimanov, Candidate of Medicine, Senior Researcher at Laboratory of Clinical and Experimental Biophysics
L. Yu. Nikitina
Russian Federation
Lidiya Yu. Nikitina, Doctor of Medicine, Head of Department of Therapy, Faculty of Postgraduate Physician Training
References
1. Ricciardolo F.L.M., Caramori G., Ito K. et al. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2005; 116 (5): 1028–1035. DOI: 10.1016/j.jaci.2005.06.034.
2. Soodaeva S.K. Free radical injury in respiratory diseases. Pul'monologiya. 2012; (1): 5–10 (in Russian).
3. Sugiura H., Ichinose M. Nitrative stress in inflammatory lung diseases. Nitric Oxide. 2011; 25 (2): 138–144. DOI: 10.1016/j.niox.2011.03.079.
4. Dozor A.J. The role of oxidative stress in the pathogenesis and treatment of asthma. Ann. New York Academy of Sciences. 2010; 1203: 133–137. DOI: 10.1111/j.1749-6632.2010.05562.x.
5. Kirkham P.A., Barnes P.J. Oxidative stress in COPD. Chest. 2013; 144 (1): 266–273. DOI: 10.1378/chest.12-2664.
6. Antus B., Kardos Z. Oxidative stress in COPD: molecular background and clinical monitoring. Curr. Med. Chemistry. 2015; 22 (5): 627–650.
7. Soodaeva S.K., Klimanov I.A. Oxidative metabolism abnormalities in respiratory diseases and current approach to antioxidant therapy. Prakticheskaya pul'monologiya. 2009; (1): 34–38 (in Russian).
8. Soodaeva S.K., Nikitina L.Yu., Klimanov I.A. Mechanisms of oxidative stress caused by environmental air pollutants: antioxidative defence potential. Pul'monologiya. 2015; 25 (6): 736–742. DOI: 10.18093/0869-0189-2015-25-6-736742 (in Russian).
9. Berend N. Contribution of air pollution to COPD and small airway dysfunction. Respirology. 2016; 21 (2): 237–244. DOI: 10.1111/resp.12644.
10. BiaBas A.J., Sitarek P.B., MiBkowska-Dymanowska J. et al. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid. Med. Cell. Long. 2016; 2016: 1–15. DOI: 10.1155/2016/7808576.
11. Vladimirov Yu.A. Physical and Chemical Basis of Cell Pathology. Lecture Course. Moscow; 2001 (in Russian).
12. Thomasi A., Ozden T., Sculachev V. Free radicals, nitric oxide, and inflammation: molecular, biochemical, and clinical aspects. In: NATO: Life and behavioural sciences. 344. Amsterdam: IOS Press; 2003: 71–88.
13. Soodaeva S.K., Klimanov I.A., Nikitina L.Yu. Particularities of nitric oxide cycle in respiratory diseases. Pul'mo- nologiya. 2016; 26 (6): 753–759. DOI: 10.18093/08690189-2016-26-6-753-759 (in Russian).
14. Ricciardolo F.L.M., Sterk P.J., Gaston B., Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004; 84 (3): 731–765. DOI: 10.1152/physrev.00034.2003.
15. Ricciardolo F.L. Multiple roles of nitric oxide in the airways. Thorax. 2003; 58 (2): 175–182.
16. Klimanov I.A., Soodaeva S.K. Mechanisms of exhaled breath condensate production and markers of oxidative stress in respiratory diseases. Pul'monologiya. 2009; (2): 113–119 (in Russian).
17. Hanazawa T., Kharitonov S., Barnes P.J. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am. J. Respir. Crit. Care Med. 2000; 162 (4): 1273–1276. DOI: 10.1164/ajrccm.162.4.9912064.
18. Corradi M., Montuschi P., Donnelly L.E. et al. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am. J. Respir. Crit. Care Med. 2001; 163 (4): 854–858. DOI: 10.1164/ajrccm.163.4.2001108.
19. Malerba M., Radaeli A., Olivini A. et al. Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed. Res. Int. 2014; 2014: 271918. DOI: 10.1155/2014/271918.
20. Formanek W., Inci D., Lauener R.P. et al. Elevated nitrite in breath condensates of children with respiratory disease. Eur. Respir. J. 2002; 19 (3): 487–491.
21. Ho L.P., Innes J.A., Greening A.P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax. 1998; 53 (8): 680–684.
22. Kharitonov S.A., Barnes P.J. Exhaled markers of inflammation. Curr. Opin. Allergy Clin. Immunol. 2001; 1 (3): 217–224.
23. McCafferty J.B., Bradshaw T.A., Tate S. et al. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentration. Thorax. 2004; 59: 694–698. DOI: 10.1136/thx.2003.016949.
24. Klimanov I.A., Soodaeva S.K., Lisitsa A.V. et al. Standardization of preanalytic stage of investigation of exhaled breath condensate. Pul'monologiya. 2006; (2): 53–55 (in Russian).
25. Millar T., Kanczler J., Bodamyali T. et al. Nitric Oxide. Its generation, reactions and role in physiology. In: NATO Conference Proceedings. 2001; 10–11.
26. Latzin P., Griese M. Exhaled hydrogen peroxide, nitrite and nitric oxide in healthy children: decrease of hydrogen peroxide by atmospheric nitric oxide. Eur. J. Med. Res. 2002; 7 (8): 353–358.
27. Emelyanov A., Fedoseev G., Abulimity A. et al. Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest. 2001; 120 (4): 1136–1139.
28. Horvath I., Donnely L., Kiss A., Kharitonov S. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med. 1998; 158 (4): 1042–1046. DOI: 10.1164/ajrccm.158.4.9710091.
29. Ferreira I.M., Mehdi S. Hazari R.I. et al. Exhaled Nitric Oxide and hydrogen peroxide in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 164 (6): 1012–1101. DOI: 10.1164/ajrccm.164.6.2012139.
30. Dekhuijzen P.N., Aben K.K., Dekker I. et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996; 154 (3, Pt 1): 813–816.
31. van Beurden W.J., Dekhuijzen P.N., Harff G.A. et al. Variability of exhaled hydrogen peroxide in stable COPD patients and matched healthy controls. Respiration. 2002; 69 (3): 211–216.
32. Loukides S., Horvath I., Wodehouse T. et al. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am. J. Respir. Crit. Care Med. 1998; 158 (3): 991–914. DOI: 10.1164/ajrccm.158.3.9710031.
33. Majewska E., Kasielski M., Luczynski R. et al. Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia. Respir. Med. 2004; 98 (7): 669–976.
34. Szkudlarek U., Maria L., Kasielski M. et al. Exhaled hydrogen peroxide correlates with the release of reactive oxygen species by blood phagocytes in healthy subjects. Respir. Med. 2003; 97 (6): 718–725.
35. Antczak A., Nowak D., Bialasiewicz P. et al. Hydrogen peroxide in expired air condensate correlates positively with early steps of peripheral neutrophil activation in asthmatic patients. Arch. Immunol. Ther. Exp. (Warsz.). 1999; 47 (2): 119–126.
36. Ho L.P., Faccenda J., Innes J.A. et al. Expired hydrogen peroxide in breath condensate of cystic fibrosis patients. Eur. Respir. J. 1999; 13 (1): 103–106.
37. Novoselov V.I. A role of peroxiredoxins for oxidative stress in respiratory system. Pul'monologiya. 2012; (1): 83–87 (in Russian).
38. Varlamova E. G., Gol'tyaev M. V., Novoselov S. V. et al. Characteristics of several substances from thiol oxireductase superfamily. Molekulyarnaya biologiya. 2013; 47 (4): 568– 582 (in Russian).
39. Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995; 64: 97–112. DOI: 10.1146/annurev.bi.64.070195.000525.
40. Tainer J.A., Getzoff E.D., Richardson J.S. et al. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983; 306 (5940): 284–287.
41. Hart P.J., Balbirnie M.M., Ogihara N.L. et al. A structurebased mechanism for copper-zinc superoxide dismutase. Biochemistry. 1999; 38 (7): 2167–2178. DOI: 10.1021/bi982284u.
42. Borgstahl G.E., Parge H.E., Hickey M.J. et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992; 71 (1): 107–118. DOI: 10.1016/00928674(92)90270-M.
43. Gardner P.R., Raineri I., Epstein L.B. et al. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 1995; 270 (22): 13399–13405.
44. Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004; 61 (2): 192–208. DOI: 10.1007/s00018-003-3206-5.
45. Arner E.S., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000; 267 (7): 6102–6109.
46. Deponte M., Urig S., Arscott L.D. et al. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J. Biol. Chem. 2005; 280: 20628–20637. DOI: 10.1074/jbc.M412519200.
47. Padayatty S.J., Katz A., Wang Y. et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003; 22 (1): 18–35.
48. Shigeoka S., Ishikawa T., Tamoi M. et al. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 2002; 53 (372): 1305–1319.
49. Herrera E., Barbas C. Vitamin E: Action, metabolism and perspectives. J. Physiol. Biochem. 2001; 57 (1): 43–56.
50. Traber M.G., Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007; 43 (1): 4–15. DOI: 10.1016/j.freeradbiomed.2007.03.024.
51. Kelly G.S. Clinical applications of N-acetylcysteine. Altern. Med. Rev. 1998; 3 (2): 114–127.
52. Millea P.J. N-acetylcysteine: multiple clinical applications. Am. Fam. Physician. 2009; 80 (3): 265–269.
53. Boesgaard S., Nielsen-Kudsk J.E., Laursen J.B. et al. Thiols and nitrates: reevaluation of the thiol depletion theory of nitrate tolerance. Am. J. Cardiol. 1998; 81: 21A–29A.
54. Zafarullah M., Li W.Q., Sylvester J., Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003; 60 (1): 6–20.
55. Amini A., Masoumi-Moghaddam S., Ehteda A., Morris D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J. Exp. Clin. Cancer. Res. 2014; 33 (1): 92. DOI: 10.1186/s13046-014-0092-7.
56. Gurbuz A.K., Ozel A.M., Ozturk R. et al. Effect of N-acetyl cysteine on Helicobacter pylori. South. Med. J. 2005; 98 (Suppl. 11): 1095–1097. DOI: 10.1097/01.smj.0000182486.39913.da.
57. Feldman L., Efrati S., Eviatar E. et al. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int. 2007; 72 (3): 359–363. DOI: 10.1038/sj.ki.5002295.
58. Zhou J., Wang M., Sun Y. et al. Nitrate Increased Cucumber Tolerance to Fusarium Wilt by Regulating Fungal Toxin production and distribution. Toxins (Basel.). 2017; 9 (3): pii: E100. DOI: 10.3390/toxins9030100.
59. Tse H.N., Tseng C.Z.S. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 825–836. DOI: 10.2147/COPD.S51057.
60. Santus P., Corsico A., Solidoro P. et al. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD. 2014; 11 (6): 705–717. DOI: 10.3109/15412555.2014.898040.
61. Stav D., Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009; 136 (2): 381–386. DOI: 10.1378/chest.09-0421.
62. Stey C., Steurer J., Bachmann S. et al. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur. Respir. J. 2000; 16 (2): 253–262.
Review
For citations:
Soodaeva S.K., Klimanov I.A., Nikitina L.Yu. Nitrosative and oxidative stresses in respiratory diseases. PULMONOLOGIYA. 2017;27(2):262-273. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-2-262-273