Preview

PULMONOLOGIYA

Advanced search

Diagnosis of respiratory diseases using the proteomic analysis of exhaled breath condensate

https://doi.org/10.18093/0869-0189-2017-27-2-187-197

Abstract

Investigation of exhaled breath condensate (EBC) is a noninvasive diagnostic method in respiratory diseases. The objective of this study was to compare EBC protein spectrum in healthy volunteers and in patients with chronic obstructive pulmonary disease (COPD), pneumonia and lung cancer (NSCLC), as well as to assess a role of proteomic analysis of EBC for diagnosis and differential diagnosis of these diseases. Methods. We examined 18 patients with COPD, 13 patients with community-acquired pneumonia, 26 patients with lung cancer and 24 healthy non-smoking volunteers. EBC was collected using ECoScreen system (VIASYS Healthcare, Germany) and a standardized method. EBC-samples were lyophilized, hydrolyzed and analyzed by HPLC and tandem mass spectrometry. To identify proteins, we used Mascot (Matrix Science, UK) and IPI-human (version 3.82) databases provided by the European Bioinformatics Institute. Results. Proteomic analysis of EBC identified more than 300 different proteins; most of them were types I and II cytoskeletal keratins. Cytokeratin 5, 6, and 14 concentrations in EBC of NSCLC patients were significantly higher than that in healthy volunteers. Dermcidin, immunoglobulin alpha, kininogen, cytoplasmic actin, serum albumin, and Zn-alpha2-glycoprotein were identified in EBC of healthy volunteers and patients with COPD and pneumonia. High concentration of peroxiredoxin in EBC of COPD patients could be due to severe oxidative stress. High levels of acute-phase and hypoxia proteins (annexins A1 and A2, HSP90B, cystatins M and B, collagen and histones fragments) were detected in EBC of pneumonia patients. Also, β- и α-subunit of hemoglobin, nuclear ubiquitin casein (NUCKS), POTEE, high mobility group protein (HMG-I/HMG-Y) and lactoferrin were identified in EBC of NSCLC patients. Conclusion. We found that EBC in healthy nonsmokers and in patients with COPD, pneumonia and NSCLC had characteristic protein spectrum. Most of the identified proteins could be used for diagnosis of these diseases.

About the Authors

E. Kh. Anaev
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation
El'dar Kh. Anaev, Doctor of Medicine, Head of Laboratory of Non-invasive Diagnostic Methods, Clinical Division


K. Yu. Fedorchenko
M.V.Lomonosov Moscow Federal State University; N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation

Competing Interests: Kristina Yu. Fedorchenko, Assistant Lecturer, International Educational and Research Biotechnological Center, M.V.Lomonosov Moscow Federal State University; Researcher at Laboratory of Kinetics and Mechanisms od Enzymatic and Catalytic Reactions, N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences


M. E. Kushaeva
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation
Miyasat E. Kushaeva, Junior Researcher, Laboratory of Non-invasive Diagnostic Methods, Clinical Division


A. M. Ryabokon'
M.V.Lomonosov Moscow Federal State University; N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation
Anna M. Ryabokon', Candidate of Chemistry, Researcher at Department of Chemical Enzymology, Chemical Faculty, M.V.Lomonosov Moscow Federal State University; Senior Researcher at Laboratory of Kinetics and Mechanisms od Enzymatic and Catalytic Reactions, N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences


A. S. Kononikhin
N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation

Competing Interests: Aleksey S. Kononikhin, Candidate of Physics & Mathematics, Leading Researcher, Laboratory of Mass-spectrometry of Biomacromolecules


V. V. Barmin
P.A.Gertsen Moscow Federal Research Oncology Institute, Healthcare Ministry of Russian Federation
Russian Federation
Vitaliy V. Barmin, Junior Researcher, Department of Thoracic Surgery


O. V. Pikin
P.A.Gertsen Moscow Federal Research Oncology Institute, Healthcare Ministry of Russian Federation
Russian Federation
Oleg V. Pikin, Doctor of Medicine, Head of Department of Thoracic Surgery


I. A. Popov
N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation
Igor' A. Popov, Candidate of Physics & Mathematics, Senior Researcher, Laboratory of Mass-spectrometry of Biomacromolecules


E. N. Nikolaev
N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation
Evgeniy N. Nikolaev, Doctor of Physics & Mathematics, Professor, Head of Laboratory of Mass-spectrometry of Biomacromolecules


S. D. Varfolomeev
M.V.Lomonosov Moscow Federal State University; N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation
Sergey D. Varfolomeev, Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Department of Chemical Enzymology, Chemical Faculty, M.V.Lomonosov Moscow Federal State University; Academic Advisor of N.M.Emanuel' Federal State Institute of Biochemical Physics, Russian Academy of Sciences


A. G. Chuchalin
Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation
Aleksandr G. Chuchalin, Doctor of Medicine, Professor, Academician of Russian Science Academy, Director of Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia; Chairman of the Executive Board of Russian Respiratory Society; Chief Therapeutist of Healthcare Ministry of Russia


References

1. Lim M.Y., Thomas P.S. Biomarkers in exhaled breath condensate and serum of chronic obstructive pulmonary disease and non-small-cell lung cancer. Int. J. Chronic Dis. 2013; 2013: 578613. DOI: 10.1155/2013/578613.

2. Konstantinidi E.M., Lappas A.S., Tzortzi A.S., Behrakis P.K. Exhaled Breath Condensate: Technical and Diagnostic Aspects. Scientific World Journal. 2015; 2015: 435160. DOI: 10.1155/2015/435160.

3. Nobakht M. Gh B.F., Aliannejad R., Rezaei-Tavirani M. et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers. 2015; 20 (1): 5–16. DOI: 10.3109/1354750X.2014.983167.

4. Borrill Z.L., Roy K., Singh D. Exhaled breath condensate biomarkers in COPD. Eur. Respir. J. 2008; 32 (2): 472–486. DOI: 10.1183/09031936.00116107.

5. Terracciano R., Pelaia G., Preiano M., Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin. Appl. 2015; 9 (1–2): 203–220. DOI: 10.1002/prca.201400099.

6. Bloemen K., Hooyberghs J., Desager K. et al. Non-invasive biomarker sampling and analysis of the exhaled breath proteome. Proteomics Clin. Appl. 2009; 3 (4): 498–504. DOI: 10.1002/prca.200800095.

7. Czitrovszky A., Szymanski W., Nagy A., Jani P. A new method for the simultaneous measurement of particle size, complex refractive index and particle density. Meas Sci. Technol. 2002; 13: 303–308.

8. Lin J.L., Bonnichsen M.H., Nogeh E.U. et al. Proteomics in detection and monitoring of asthma and smoking-related lung diseases. Exp. Rev. Proteomics. 2010; 7 (3): 361–372. DOI: 10.1586/epr.10.9.

9. Horvath I., Lazar Z., Gyulai N. et al. Exhaled biomarkers in lung cancer. Eur. Respir. J. 2009; 34 (1): 261–275. DOI: 10.1183/09031936.00142508.

10. Lim M.Y., Thomas P.S. Biomarkers in exhaled breath condensate and serum of chronic obstructive pulmonary disease and non-small-cell lung cancer. Int. J. Chronic Dis. 2013; 2013: 578613. DOI: 10.1155/2013/578613.

11. Lee Y.T., Chen S.C., Shyu L.Y. et al. Significant elevation of plasma cathepsin B and cystatin C in patients with community-acquired pneumonia. Clin. Chim. Acta. 2012; 413 (5–6): 630–635. DOI: 10.1016/j.cca.2011.12.010.

12. Nobakht M. Gh B.F., Aliannejad R., Rezaei-Tavirani M. et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers. 2015; 20 (1): 5–16. DOI: 10.3109/1354750X.2014.983167.

13. Buszewski B., Kesy M., Ligor T., Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007; 21 (6): 553–566.

14. Terracciano R., Pelaia G., Preiano M., Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin. Appl. 2015; 9 (1–2): 203–220. DOI: 10.1002/prca.201400099.

15. Conrad D.H., Goyette J., Thomas P.S. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med. 2008; 23 (Suppl. 1): 78–84. DOI: 10.1007/s11606-007-0411-1.

16. Czitrovszky A., Szymanski W., Nagy A., Jani P. A new method for the simultaneous measurement of particle size, complex refractive index and particle density. Meas Sci. Technol. 2002; 13: 303–308.

17. Horvath I., Hunt J., Barnes P.J. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 2005; 26 (3): 523–548.

18. Horvath I., Lazar Z., Gyulai N. et al. Exhaled biomarkers in lung cancer. Eur. Respir. J. 2009; 34 (1): 261–275. DOI: 10.1183/09031936.00142508.

19. Global Strategy for Diagnosis, Management, and Prevention of COPD. Updated 2014. Available at: http://goldcopd.org/wp-content/uploads/2016/04/GOLD-Report-Russian2014.pdf/ (in Russian).

20. Lee Y.T., Chen S.C., Shyu L.Y. et al. Significant elevation of plasma cathepsin B and cystatin C in patients with community-acquired pneumonia. Clin. Chim. Acta. 2012; 413 (5–6): 630–635. DOI: 10.1016/j.cca.2011.12.010.

21. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al. Russian Respiratory Society (RRS). Interregional Association on Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC). Clinical Guidelines on Diagnosis, Treatment and Prevention of Severe Community-Acquired Pneumonia. Pul'monologiya. 2014; (4): 13–48 (in Russian).

22. Buszewski B., Kesy M., Ligor T., Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007; 21 (6): 553–566.

23. Bychkov M.B., Gorbunova V.A. The Association of Oncologists of Russia. Clinical Guidelines on Diagnosis and Treatment of Patients with Lung Carcinomas. Moscow; 2014. Available at: http://oncology-association.ru/docs/recomend/may2015/19vz-rek.pdf (in Russian).

24. Conrad D.H., Goyette J., Thomas P.S. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med. 2008; 23 (Suppl. 1): 78–84. DOI: 10.1007/s11606-007-0411-1.

25. Kurova V., Anaev E., Kononikhin A. et al. Proteomics of exhaled breath: methodological nuances and pitfalls. Clin. Chem. Lab. Med. 2009; 47 (6): 706–712. DOI: 10.1515/CCLM.2009.166.

26. Horvath I., Hunt J., Barnes P.J. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 2005; 26 (3): 523–548.

27. Ishihama Y., Rappsilber J., Andersen J.S., Mann M. Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A. 2002; 979 (1–2): 233–239.

28. Global Strategy for Diagnosis, Management, and Prevention of COPD. Updated 2014. Available at: http://goldcopd.org/wp-content/uploads/2016/04/GOLD-Report-Russian2014.pdf/ (in Russian).

29. Nesvizhskii A., Keller A., Kolker E., Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003; 75 (17): 4646–4658.

30. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al. Russian Respiratory Society (RRS). Interregional Association on Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC). Clinical Guidelines on Diagnosis, Treatment and Prevention of Severe Community-Acquired Pneumonia. Pul'monologiya. 2014; (4): 13–48 (in Russian).

31. Hoffmann H., Tabaksblat L., Enghild J., Dahl R. Human skin keratins are the major proteins in exhaled breath condensate. Eur. Respir. J. 2008; 31 (2): 380–384. DOI: 10.1183/09031936.00059707.

32. Bychkov M.B., Gorbunova V.A. The Association of Oncologists of Russia. Clinical Guidelines on Diagnosis and Treatment of Patients with Lung Carcinomas. Moscow; 2014. Available at: http://oncology-association.ru/docs/recomend/may2015/19vz-rek.pdf (in Russian).

33. Schittek B., Hipfel R., Sauer B. et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001; 2 (12): 1133–1137.

34. Kurova V., Anaev E., Kononikhin A. et al. Proteomics of exhaled breath: methodological nuances and pitfalls. Clin. Chem. Lab. Med. 2009; 47 (6): 706–712. DOI: 10.1515/CCLM.2009.166.

35. Ghosh R., Maji U.K., Bhattacharya R., Sinha A.K. The role of dermcidin isoform 2: a two-faceted atherosclerotic risk factor for coronary artery disease and the effect of acetyl salicylic acid on it. Thrombosis. 2012; 2012: 987932. DOI: 10.1155/2012/987932.

36. Ishihama Y., Rappsilber J., Andersen J.S., Mann M. Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A. 2002; 979 (1–2): 233–239.

37. Lee Motoyama J.P., Kim-Motoyama H., Kim P. et al. Identification of dermcidin in human gestational tissue and characterization of its proteolytic activity. Biochem. Biophys. Res. Commun. 2007; 35 7(4): 828–833.

38. Nesvizhskii A., Keller A., Kolker E., Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003; 75 (17): 4646–4658.

39. Cunningham T.J., Hodge L., Speicher D. et al. Identification of a survival-promoting peptide in medium conditioned by oxidatively stressed cell lines of nervous system origin. J. Neurosci. 1998; 18: 7047–7060.

40. Hoffmann H., Tabaksblat L., Enghild J., Dahl R. Human skin keratins are the major proteins in exhaled breath condensate. Eur. Respir. J. 2008; 31 (2): 380–384. DOI: 10.1183/09031936.00059707.

41. Stewart G.D., Skipworth R.J., Pennington C.J. et al. Variation in dermcidin expression in a range of primary human tumours and in hypoxic/oxidatively stressed human cell lines. Br. J. Cancer. 2008; 99 (1): 126–132. DOI: 10.1038/sj.bjc.6604458.

42. Schittek B., Hipfel R., Sauer B. et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001; 2 (12): 1133–1137.

43. Yano C.L., Ventrucci G., Field W.N. et al. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes. BMC Cancer. 2008; 8: 24. DOI: 10.1186/14712407-8-24.

44. Ghosh R., Maji U.K., Bhattacharya R., Sinha A.K. The role of dermcidin isoform 2: a two-faceted atherosclerotic risk factor for coronary artery disease and the effect of acetyl salicylic acid on it. Thrombosis. 2012; 2012: 987932. DOI: 10.1155/2012/987932.

45. Urade Y., Hayaishi O. Prostaglandin D synthase: Structure and function. Vitam. Horm. 2000; 58: 89–120.

46. Lee Motoyama J.P., Kim-Motoyama H., Kim P. et al. Identification of dermcidin in human gestational tissue and characterization of its proteolytic activity. Biochem. Biophys. Res. Commun. 2007; 35 7(4): 828–833.

47. Mizon C., Piva F., Queyrel V. et al. Urinary bikunin determination provides insight into proteinase / proteinase inhibitor imbalance in patients with inflammatory diseases. Clin. Chem. Lab. Med. 2002; 40 (6): 579–586.

48. Cunningham T.J., Hodge L., Speicher D. et al. Identification of a survival-promoting peptide in medium conditioned by oxidatively stressed cell lines of nervous system origin. J. Neurosci. 1998; 18: 7047–7060.

49. Leclerc E.A., Gazeilles L., Serre G. et al. The ubiquitous dermokine delta activates Rab5 function in the early endocytic pathway. PLoS One. 2011; 6 (3): e17816. DOI: 10.1371/journal.pone.0017816.

50. Stewart G.D., Skipworth R.J., Pennington C.J. et al. Variation in dermcidin expression in a range of primary human tumours and in hypoxic/oxidatively stressed human cell lines. Br. J. Cancer. 2008; 99 (1): 126–132. DOI: 10.1038/sj.bjc.6604458.

51. Hasegawa M., Higashi K., Yokoyama C. et al. Altered expression of dermokine in skin disorders. J. Eur. Acad. Dermatol. Venereol. 2013; 27 (7): 867–875. DOI: 10.1111/j.1468-3083.2012.04598.x.

52. Yano C.L., Ventrucci G., Field W.N. et al. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes. BMC Cancer. 2008; 8: 24. DOI: 10.1186/14712407-8-24.

53. Kinnula V.L., Vuorinen K., Ilumets H. et al. Thiol proteins, redox modulation and parenchymal lung disease. Curr. Med. Chem. 2007; 14 (2): 213–222.

54. Urade Y., Hayaishi O. Prostaglandin D synthase: Structure and function. Vitam. Horm. 2000; 58: 89–120.

55. Poschmann G., Sitek B., Sipos B. et al. Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol. Cell Proteomics. 2009; 8 (5): 1105–1116. DOI: 10.1074/mcp.M800422MCP200.

56. Mizon C., Piva F., Queyrel V. et al. Urinary bikunin determination provides insight into proteinase / proteinase inhibitor imbalance in patients with inflammatory diseases. Clin. Chem. Lab. Med. 2002; 40 (6): 579–586.

57. Spik I., Brenuchon C., Angeli V. et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J. Immunol. 2005; 174 (6): 3703–3708.

58. Leclerc E.A., Gazeilles L., Serre G. et al. The ubiquitous dermokine delta activates Rab5 function in the early endocytic pathway. PLoS One. 2011; 6 (3): e17816. DOI: 10.1371/journal.pone.0017816.

59. Wei N., Deng X.W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 2003; 19: 261–286. DOI:10.1146/annurev.cellbio.19.111301.112449.

60. Hasegawa M., Higashi K., Yokoyama C. et al. Altered expression of dermokine in skin disorders. J. Eur. Acad. Dermatol. Venereol. 2013; 27 (7): 867–875. DOI: 10.1111/j.1468-3083.2012.04598.x.

61. Wang Q., Li X., Ren S. et al. Serum levels of the cancertestis antigen POTEE and its clinical significance in nonsmall-cell lung cancer. PLoS One. 2015; 10 (4): e0122792. DOI: 10.1371/journal.pone.0122792.

62. Kinnula V.L., Vuorinen K., Ilumets H. et al. Thiol proteins, redox modulation and parenchymal lung disease. Curr. Med. Chem. 2007; 14 (2): 213–222.

63. Wood L., Maher J., Bunton T., Resar L. The oncogenic properties of the HMG-I gene family. Cancer Res. 2000; 60 (15): 4256–4261.

64. Poschmann G., Sitek B., Sipos B. et al. Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol. Cell Proteomics. 2009; 8 (5): 1105–1116. DOI: 10.1074/mcp.M800422MCP200.

65. Resar L. The high mobility group A1 gene: transforming inflammatory signals into cancer? Cancer Res. 2010; 70 (2): 436–439. DOI: 10.1158/0008-5472.CAN-09-1212.

66. Spik I., Brenuchon C., Angeli V. et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J. Immunol. 2005; 174 (6): 3703–3708.

67. Walmer D., Padin C., Wrona M. et al. Malignant transformation of the human endometrium is associated with overexpression of lactoferrin messenger RNA and protein. Cancer Res. 1995; 55: 1168–1175.

68. Wei N., Deng X.W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 2003; 19: 261–286. DOI:10.1146/annurev.cellbio.19.111301.112449.

69. Ziolkowski P., Wozniak M., Dus K., Wisniewski J. The NUCKS: A novel tumor biomarker. J. Mol. Biomark. Diagn. 2013; 4 (145): 1000145.

70. Wang Q., Li X., Ren S. et al. Serum levels of the cancertestis antigen POTEE and its clinical significance in nonsmall-cell lung cancer. PLoS One. 2015; 10 (4): e0122792. DOI: 10.1371/journal.pone.0122792.

71. Wood L., Maher J., Bunton T., Resar L. The oncogenic properties of the HMG-I gene family. Cancer Res. 2000; 60 (15): 4256–4261.

72. Resar L. The high mobility group A1 gene: transforming inflammatory signals into cancer? Cancer Res. 2010; 70 (2): 436–439. DOI: 10.1158/0008-5472.CAN-09-1212.

73. Walmer D., Padin C., Wrona M. et al. Malignant transformation of the human endometrium is associated with overexpression of lactoferrin messenger RNA and protein. Cancer Res. 1995; 55: 1168–1175.

74. Ziolkowski P., Wozniak M., Dus K., Wisniewski J. The NUCKS: A novel tumor biomarker. J. Mol. Biomark. Diagn. 2013; 4 (145): 1000145.


Review

For citations:


Anaev E.Kh., Fedorchenko K.Yu., Kushaeva M.E., Ryabokon' A.M., Kononikhin A.S., Barmin V.V., Pikin O.V., Popov I.A., Nikolaev E.N., Varfolomeev S.D., Chuchalin A.G. Diagnosis of respiratory diseases using the proteomic analysis of exhaled breath condensate. PULMONOLOGIYA. 2017;27(2):187-197. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-2-187-197

Views: 1894


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)