Оценка нутритивного статуса и его коррекция при хронической обструктивной болезни легких


https://doi.org/10.18093/0869-0189-2016-26-1-13-28

Полный текст:


Аннотация

При хронической обструктивной болезни легких (ХОБЛ) активно изучаются такие научные направления, как питание и метаболизм. Однако в клинической практике существует недостаточное понимание того, что пищевые привычки, нутритивный статус и нутритивные вмешательства могут влиять на распространенность ХОБЛ, ее прогрессирование и исходы. Для анализа доказательств и описания существующей клинической практики по оценке нутритивного статуса и его коррекции у больных ХОБЛ, а также для разработки направлений будущих клинических исследований Европейским респираторным обществом создана Рабочая группа. Членами Рабочей группы проведен обзор литературы по соответствующим темам. Известно, что нутритивный статус, в частности, изменение телосложения, является самостоятельным фактором, определяющим исход ХОБЛ. Для оценки нутритивного риска Рабочей группой выделены несколько метаболических фенотипов ХОБЛ, что важно как для построения дизайна клинических исследований, так и для консультативной работы. Возможно, нутритивные вмешательства могут быть эффективными у больных с дефицитом массы тела, особенно в сочетании с физическими тренировками. Для социальной поддержки такого лечения и, как следствие, повышения его доступности необходимы доказательства его экономической эффективности. В целом согласно существующим сегодня доказательствам показано, что хорошо сбалансированное питание оказывает положительное влияние на всех больных ХОБЛ, в первую очередь за счет снижения метаболического и кардиоваскулярного риска.


Об авторе

статья Редакционная

Россия


Список литературы

1. Vestbo J., Hurd S.S., Agusti A.G. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013; 187: 347–365.

2. Vanfleteren L.E., Spruit M.A., Groenen M. et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 187: 728–735.

3. Burgel P.R., Paillasseur J.L., Peene B. et al. Two distinct chronic obstructive pulmonary disease (COPD) phenotypes are associated with high risk of mortality. PLoS One. 2012; 7: e51048.

4. Filley G.F., Beckwitt H.J., Reeves J.T. et al. Chronic obstructive bronchopulmonary disease. II. Oxygen transport in two clinical types. Am. J. Med. 1968; 44: 26–38.

5. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010; 39: 412–423.

6. Evans W.J., Morley J.E., Argiles J. et al. Cachexia: a new definition. Clin. Nutr. 2008; 27: 793–799.

7. Muscaritoli M., Anker S.D., Argiles J. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) ‘‘cachexia-anorexia in chronic wasting diseases’’ and ‘‘nutrition in geriatrics’’. Clin. Nutr. 2010; 29: 154–159.

8. Berrington de Gonzalez A., Hartge P., Cerhan J.R. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010; 363: 2211–2219.

9. Whitlock G., Lewington S., Sherliker P. et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009; 373: 1083–1096.

10. Vestbo J., Prescott E., Almdal T. et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am. J. Respir. Crit. Care Med. 2006; 173: 79–83.

11. Morley J.E., Abbatecola A.M., Argiles J.M. et al. Sarcopenia with limited mobility: an international consensus. J. Am. Med. Dir. Assoc. 2011; 12: 403–409.

12. Stratton R.J., Hackston A., Longmore D. et al. Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the ‘‘malnutrition universal screening tool’’ (‘‘MUST’’) for adults. Br. J. Nutr. 2004; 92: 799–808.

13. Vellas B., Villars H., Abellan G. et al. Overview of the MNA – its history and challenges. J. Nutr. Health Aging. 2006; 10: 456–463.

14. Landbo C., Prescott E., Lange P. et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 160: 1856–1861.

15. Schols A.M., Slangen J., Volovics L. et al. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998; 157: 1791–1797.

16. Lainscak M., von Haehling S., Doehner W. et al. Body mass index and prognosis in patients hospitalized with acute exacerbation of chronic obstructive pulmonary disease. J. Cachexia Sarcopenia Muscle. 2011; 2: 81–86.

17. Ora J., Laveneziana P., Wadell K. et al. Effect of obesity on respiratory mechanics during rest and exercise in COPD. J. Appl. Physiol. (1985) 2011; 111: 10–19.

18. Schols A.M., Broekhuizen R., Weling-Scheepers C.A. et al. Body composition and mortality in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2005; 82: 53–59.

19. Engelen M.P., Schols A.M., Lamers R.J. et al. Different patterns of chronic tissue wasting among patients with chronic obstructive pulmonary disease. Clin. Nutr. 1999; 18: 275–280.

20. van den Borst B., Gosker H.R., Koster A. et al. The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease. Am. J. Clin. Nutr. 2012; 96: 516–526.

21. Bolton C.E., Ionescu A.A., Shiels K.M. et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170: 1286–1293.

22. Maltais F., Decramer M., Casaburi R. et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014; 189: e15–e62.

23. Schols A., Mostert R., Cobben N. et al. Transcutaneous oxygen saturation and carbon dioxide tension during meals in patients with chronic obstructive pulmonary disease. Chest. 1991; 100: 1287–1292.

24. Gronberg A.M., Slinde F., Engstrom C.P. et al. Dietary problems in patients with severe chronic obstructive pulmonary disease. J. Hum. Nutr. Diet. 2005; 18: 445–452.

25. Goris A.H., Vermeeren M.A., Wouters E.F. et al. Energy balance in depleted ambulatory patients with chronic obstructive pulmonary disease: the effect of physical activity and oral nutritional supplementation. Br. J. Nutr. 2003; 89: 725–731.

26. Schols A.M., Soeters P.B., Mostert R. et al. Energy balance in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1991; 143: 1248–1252.

27. Kao C.C., Hsu J.W., Bandi V. et al. Resting energy expenditure and protein turnover are increased in patients with severe chronic obstructive pulmonary disease. Metabolism 2011; 60: 1449–1455.

28. Layec G., Haseler L.J., Hoff J. et al. Evidence that a higher ATP cost of muscular contraction contributes to the lower mechanical efficiency associated with COPD: preliminary findings. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011; 300: R1142–R1147.

29. Baarends E.M., Schols A.M., Akkermans M.A. et al. Decreased mechanical efficiency in clinically stable patients with COPD. Thorax. 1997; 52: 981–986.

30. Baarends E.M., Schols A.M., Pannemans D.L. et al. Total free living energy expenditure in patients with severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1997; 155: 549–554.

31. Kim V., Kretschman D.M., Sternberg A.L. et al. Weight gain after lung reduction surgery is related to improved lung function and ventilatory efficiency. Am. J. Respir. Crit. Care Med. 2012; 186: 1109–1116.

32. Efthimiou J., Mounsey P.J., Benson D.N. et al. Effect of carbohydrate rich versus fat rich loads on gas exchange and walking performance in patients with chronic obstructive lung disease. Thorax. 1992; 47: 451–456.

33. Rutten E.P., Franssen F.M., Engelen M.P. et al. Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2006; 83: 829–834.

34. Langen R.C., Gosker H.R., Remels A.H. et al. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int. J. Biochem. Cell Biol. 2013; 45: 2245–2256.

35. Guo Y., Gosker H.R., Schols A.M. et al. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 188: 1313–1320.

36. Jonker R., Deutz N.E., Erbland M.L. et al. Hydrolyzed casein and whey protein meals comparably stimulate net whole-body protein synthesis in COPD patients with nutritional depletion without an additional effect of leucine co-ingestion. Clin. Nutr. 2014; 33: 211–220.

37. Engelen M.P., Wouters E.F., Deutz N.E. et al. Factors contributing to alterations in skeletal muscle and plasma amino acid profiles in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2000; 72: 1480–1487.

38. Engelen M.P., De Castro C.L., Rutten E.P. et al. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin. Nutr. 2012; 31: 616–624.

39. Rutten E.P., Lenaerts K., Buurman W.A. et al. Disturbed intestinal integrity in patients with COPD; effects of activities of daily living. Chest. 2013; 145: 245–252.

40. Engelen M.P., Rutten E.P., De Castro C.L. et al. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2007; 85: 431–439.

41. Engelen M.P., Deutz N.E., Mostert R. et al. Response of whole-body protein and urea turnover to exercise differs between patients with chronic obstructive pulmonary disease with and without emphysema. Am. J. Clin. Nutr. 2003; 77: 868–874.

42. Sambrook P., Cooper C. Osteoporosis. Lancet 2006; 367: 2010–2018.

43. Lehouck A., Boonen S., Decramer M. et al. COPD, bone metabolism, and osteoporosis. Chest. 2011; 139: 648–657.

44. Graat-Verboom L., Wouters E.F, Smeenk F.W. et al. Current status of research on osteoporosis in COPD: a systematic review. Eur. Respir. J. 2009; 34: 209–218.

45. Graat-Verboom L., Smeenk F.W., van den Borne B.E. et al. Risk factors for osteoporosis in Caucasian patients with moderate chronic obstructive pulmonary disease: a case control study. Bone. 2012; 50: 1234–1239.

46. Bon J., Fuhrman C.R., Weissfeld J.L. et al. Radiographic emphysema predicts low bone mineral density in a tobaccoexposed cohort. Am. J. Respir. Crit. Care Med. 2011; 183: 885–890.

47. Makita H., Nasuhara Y., Nagai K. et al. Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax. 2007; 62: 932–937.

48. Ohara T., Hirai T., Muro S. et al. Relationship between pulmonary emphysema and osteoporosis assessed by CT in patients with COPD. Chest. 2008; 134: 1244–1249.

49. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001; 22: 477–501.

50. Franco C.B., Paz-Filho G., Gomes P.E, et al. Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int. 2009; 20: 1881–1887.

51. Rachner T.D., Khosla S., Hofbauer L.C. Osteoporosis: now and the future. Lancet. 2011; 377: 1276–1287.

52. McGarvey L.P., John M., Anderson J.A, et al. Ascertainment of cause-specific mortality in COPD: operations of the TORCH Clinical Endpoint Committee. Thorax. 2007; 62: 411–415.

53. van den Borst B., Gosker H.R., Wesseling G. et al. Low-grade adipose tissue inflammation in patients with mild-tomoderate chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2011; 94: 1504–1512.

54. van den Borst B., Gosker H.R., Schols A.M. Central fat and peripheral muscle: partners in crime in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 187: 8–13.

55. Bautista J., Ehsan M., Normandin E. et al. Physiologic responses during the six minute walk test in obese and nonobese COPD patients. Respir. Med. 2011; 105: 1189–1194.

56. Chaston T.B., Dixon J.B. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int. J. Obes. (Lond.) 2008; 32: 619–628.

57. Schols A.M. Translating nutritional potential of metabolic remodelling to disease-modifying nutritional management. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 617–618.

58. Vermeeren M.A., Schols A.M., Wouters E.F. Effects of an acute exacerbation on nutritional and metabolic profile of patients with COPD. Eur. Respir. J. 1997; 10: 2264–2269.

59. Ehsan M., Khan R., Wakefield D. et al. A longitudinal study evaluating the effect of exacerbations on physical activity in patients with chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2013; 10: 559–564.

60. Creutzberg E.C., Wouters E.F., Vanderhoven-Augustin I.M. et al. Disturbances in leptin metabolism are related to energy imbalance during acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000; 162: 1239–1245.

61. Saudny-Unterberger H., Martin J.G., Gray-Donald K. Impact of nutritional support on functional status during an acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1997; 156: 794–799.

62. Pouw E.M., Ten Velde G.P., Croonen B.H, et al. Early non-elective readmission for chronic obstructive pulmonary disease is associated with weight loss. Clin. Nutr. 2000; 19: 95–99.

63. Lainscak M., Gosker H.R., Schols A.M. Chronic obstructive pulmonary disease patient journey: hospitalizations as window of opportunity for extra-pulmonary intervention. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 278–283.

64. Broekhuizen R., Creutzberg E.C., Weling-Scheepers C.A, et al. Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. Br. J. Nutr. 2005; 93: 965–971.

65. Weekes C.E., Emery P.W., Elia M. Dietary counselling and food fortification in stable COPD: a randomised trial. Thorax. 2009; 64: 326–331.

66. Ferreira I.M., Brooks D., White J. et al. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; 12: CD000998.

67. DeLetter M.C. A nutritional intervention for persons with chronic airflow limitation. PhD thesis. Lexington: University of Kentucky; 1991.

68. Efthimiou J., Felming J., Gomes C. et al. The effect of supplementary oral nutrition in poorly nourished patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1988; 137: 1075–1082.

69. Fuenzalida C.E., Petty T.L., Jones M.L. The immune response to short nutritional intervention in advanced COPD. Am. Rev. Respir. Dis. 1990; 142: 49–56.

70. Lewis M.I., Belman M.J., Dorr Uyemura J. Nutritional supplementation in ambulatory patients with COPD. Am. Rev. Respir. Dis. 1987; 135: 1062–1068.

71. Otte K.E., Ahlburg P., D’Amore F. et al. Nutritional repletion in malnourished patients with emphysema. J. Parenter. Enteral. Nutr. 1989; 13: 152–156.

72. Rogers R.M., Donahoe M., Constantino J. Physiologic effects of oral supplementation feeding in malnourished patients with COPD – a randomized control study. Am. Rev. Respir. Dis. 1992; 146: 1511–1517.

73. Schols A.M., Soeters P.B., Mostert R. et al. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease. A placebo-controlled randomized trial. Am. J. Respir. Crit. Care Med. 1995; 152: 1268–1274.

74. Sugawara K., Takahashi H., Kasai C. et al. Effects of nutritional supplementation combined with low-intensity exercise in malnourished patients with COPD. Respir. Med. 2010; 104: 1883–1889.

75. Hoogendoorn M., van Wetering C.R. Schols A.M. et al. Is INTERdisciplinary COMmunitybased COPD management (INTERCOM) cost-effective? Eur. Respir. J. 2010; 35: 79–87.

76. van Wetering C.R., Hoogendoorn M., Broekhuizen R. et al. Efficacy and costs of nutritional rehabilitation in musclewasted patients with chronic obstructive pulmonary disease in a community-based setting: a prespecified subgroup analysis of the INTERCOM trial. J. Am. Med. Dir. Assoc. 2010; 11: 179–187.

77. van Wetering C.R., Hoogendoorn M., Geraerts-Keeris A.J. et al. Effectiveness and costs of nutritional intervention integrated in an INTERdisciplinary COMmunity-based COPD management program (INTERCOM) in patients with less advanced COPD. Am. J. Respir. Crit. Care Med. 2009; 179: A5375.

78. Van Wetering C.R., Hoogendoorn M., Mol S.J.M. et al. Short- and long-term efficacy of a community-based COPD management programme in less advanced COPD: a randomised controlled trial. Thorax. 2010; 65: 7–13.

79. van Wetering C.R., van Nooten F.E., Mol S.J. et al. Systemic impairment in relation to disease burden in patients with moderate COPD eligible for a lifestyle program. Findings from the INTERCOM trial. Int. J. COPD. 2008; 3: 443–451.

80. Weekes C.E., Bateman N.T., Elia M. et al. Tailored dietary advice and food fortification results in weight gain and clinical benefit in malnourished patients with chronic obstructive pulmonary disease. Thorax. 2004; 59: Suppl. 2, ii4.

81. Ryan C.F., Road J.D., Buckley P.A. et al. Energy balance in stable malnourished patients with chronic obstructive pulmonary disease. Chest. 1993; 103: 1038–1044.

82. Whittaker J.S., Ryan C.F., Buckley P.A. et al. The effects of refeeding on peripheral respiratory muscle function in malnourished chronic obstructive disease patients. Am. Rev. Respir. Dis. 1990; 142: 283–288.

83. Knowles J.B., Fairbarn M.S., Wiggs B.J. et al. Dietary supplementation and respiratory muscle performance in patients with COPD. Chest. 1988; 93: 977–983.

84. Steiner M.C., Barton R.L., Singh S.J. et al. Nutritional enhancement of exercise performance in chronic obstructive pulmonary disease: a randomised controlled trial. Eur. Respir. J. 2002; 20 (Suppl. 38): 262s.

85. Steiner M.C., Barton R.L., Singh S.J. et al. Nutritional enhancement of exercise performance in chronic obstructive pulmonary disease: a randomised controlled trial. Thorax. 2003; 58: 745–751.

86. Steiner M.C., Barton R.L., Singh S.J. et al. The effect of nutritional supplementation on body weight and composition in COPD patients participating in rehabilitation. Eur. Respir. J. 2002; 20 (Suppl. 38): 211s.

87. Sugawara K., Shioya T., Satake M. et al. Anti-inflammatory nutritional support enhances exercise performance and QOL in patients with stable COPD. Eur. Respir. J. 2011; 38 (Suppl. 55): 326s.

88. Sugawara K., Takahashi H., Kashiwagura T. et al. Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir. Med. 2012; 106: 1526–1534.

89. Atkins D., Best D., Briss P.A. et al. Grading quality of evidence and strength of recommendations. Br. Med. J. 2004; 328: 1490.

90. Puhan M.A., Chandra D., Mosenifar Z. et al. The minimal important difference of exercise tests in severe COPD. Eur. Respir. J. 2011; 37: 784–790.

91. Polkey M.I., Spruit M.A., Edwards L.D. et al. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am. J. Respir. Crit. Care Med. 2013; 187: 382–386.

92. Collins P.F., Stratton R.J. Elia M. Nutritional support in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2012; 95: 1385–1395.

93. Collins P.F., Elia M., Stratton R.J. Nutritional support and functional capacity in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respirology. 2013; 18: 616–629.

94. van Loon L.J. Is there a need for protein ingestion during exercise? Sport Med. 2014; 44 (Suppl. 1): S105–S111.

95. Devries M.C., Phillips S.M. Creatine supplementation during resistance training in older adults – a meta-analysis. Med. Sci. Sports Exerc. 2014; 46: 1194–1203.

96. van de Bool C., Steiner M.C., Schols A.M. Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease. Curr. Opin. Clin. Nutr. Metab. Care. 2012; 15: 553–560.

97. Mickleborough T.D. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int. J. Sport Nutr. Exerc. Metab. 2013; 23: 83–96.

98. Cermak N.M., Gibala M.J., van Loon L.J. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2012; 22: 64–71.

99. Schols A.M. Nutrition as a metabolic modulator in COPD. Chest 2013; 144: 1340–1345.

100. Baldi S., Aquilani R., Pinna G.D. et al. Fat-free mass change after nutritional rehabilitation in weight losing COPD: role of insulin, C-reactive protein and tissue hypoxia. Int. J. Chron. Obstruct. Pulm. Dis. 2010; 5: 29–39.

101. Deacon S.J., Vincent E.E., Greenhaff P.L. et al. Randomized controlled trial of dietary creatine as an adjunct therapy to physical training in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008; 178: 233–239.

102. Fuld J.P., Kilduff L.P., Neder J.A. et al. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax. 2005; 60: 531–537.

103. Faager G., Soderlund K., Skold C.M. et al. Creatine supplementation and physical training in patients with COPD: a double blind, placebo-controlled study. Int. J. Chron. Obstruct. Pulm. Dis. 2006; 1: 445–453.

104. Broekhuizen R., Wouters E.F., Creutzberg E.C. et al. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax. 2005; 60: 376–382.

105. Al-Ghimlas F., Todd D.C. Creatine supplementation for patients with COPD receiving pulmonary rehabilitation: a systematic review and meta-analysis. Respirology. 2010; 15: 785–795.

106. Constantin D., Menon M.K., Houchen-Wolloff L. et al. Skeletal muscle molecular responses to resistance training and dietary supplementation in COPD. Thorax. 2013; 68: 625–633.

107. Giron R., Matesanz C., Garcia-Rio F. et al. Nutritional state during COPD exacerbation: clinical and prognostic implications. Ann. Nutr. Metab. 2009; 54: 52–58.

108. Gupta B., Kant S., Mishra R. et al. Nutritional status of chronic obstructive pulmonary disease patients admitted in hospital with acute exacerbation. J. Clin. Med. Res. 2010; 2: 68–74.

109. Hallin R., Koivisto-Hursti U.K., Lindberg E. et al. Nutritional status, dietary energy intake and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Respir. Med. 2006; 100: 561–567.

110. Odencrants S., Ehnfors M., Ehrenberg A. Nutritional status and patient characteristics for hospitalised older patients with chronic obstructive pulmonary disease. Clin. Nurs. 2008; 17: 1771–1778.

111. Edington J., Barnes R., Bryan F. et al. A prospective randomised controlled trial of nutritional supplementation in malnourished elderly in the community: clinical and health economic outcomes. Clin. Nutr. 2004; 23: 195–204.

112. Janssens W., Lehouck A., Carremans C. et al. Vitamin D beyond bones in chronic obstructive pulmonary disease: time to act. Am. J. Respir. Crit. Care Med. 2009; 179: 630–636.

113. Black P.N., Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third national health and nutrition examination survey. Chest. 2005; 128: 3792–3798.

114. Ginde A.A., Mansbach J.M., Camargo C.A. Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009; 169: 384–390.

115. Kunisaki K.M., Niewoehner D.E., Singh R.J. et al. Vitamin D status and longitudinal lung function decline in the Lung Health Study. Eur. Respir. J. 2011; 37: 238–243.

116. Lange N.E., Sparrow D., Vokonas P. et al. Vitamin D deficiency, smoking, and lung function in the Normative Aging Study. Am. J. Respir. Crit. Care Med. 2012; 186: 616–621.

117. Afzal S., Lange P., Bojesen S.E. et al. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease. Thorax. 2014; 69: 24–31.

118. Lehouck A., Mathieu C., Carremans C. et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. 2012; 156: 105–114.

119. Agler A.H., Kurth T., Gaziano J.M. et al. Randomised vitamin E supplementation and risk of chronic lung disease in the Women’s Health Study. Thorax. 2011; 66: 320–325.

120. Varraso R., Jiang R., Barr R.G. et al. Prospective study of cured meats consumption and risk of chronic obstructive pulmonary disease in men. Am. J. Epidemiol. 2007; 166: 1438–1445.

121. Varraso R., Fung T.T., Barr R.G. et al. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. Am. J. Clin. Nutr. 2007; 86: 488–495.

122. Varraso R., Willett W.C., Camargo C.A. Jr. Prospective study of dietary fiber and risk of chronic obstructive pulmonary disease among US women and men. Am. J. Epidemiol. 2010; 171: 776–784.

123. Fonseca Wald E.L., van den Borst B., Gosker H.R. et al. Dietary fibre and fatty acids in chronic obstructive pulmonary disease risk and progression: a systematic review. Respirology. 2014; 19: 176–184.

124. Jiang R., Camargo C.A. Jr., Varraso R. et al. Consumption of cured meats and prospective risk of chronic obstructive pulmonary disease in women. Am. J. Clin. Nutr. 2008; 87: 1002–1008.

125. Chow C.K. Consumption of cured meats and risk of chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2008; 88: 1703.

126. de Batlle J., Mendez M., Romieu I. et al. Cured meat consumption increases risk of readmission in COPD patients. Eur. Respir. J. 2012; 40: 555–560.

127. Silverberg D.S., Mor R., Weu M.T. et al. Anemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm. Med. 2014; 14: 24.

128. Pison C.M., Cano N.J., Cherion C. et al. Multimodal nutritional rehabilitation improves clinical outcomes of malnourished patients with chronic respiratory failure: a randomised controlled trial. Thorax. 2011; 66: 953–960.


Дополнительные файлы

Для цитирования: Редакционная с. Оценка нутритивного статуса и его коррекция при хронической обструктивной болезни легких.  Пульмонология. 2016;26(1):13-28. https://doi.org/10.18093/0869-0189-2016-26-1-13-28

For citation: Editorial a. Evaluation of nutritional status and nutritional therapy in chronic obstructive pulmonary disease. Russian Pulmonology. 2016;26(1):13-28. (In Russ.) https://doi.org/10.18093/0869-0189-2016-26-1-13-28

Просмотров: 660

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)