Биомаркеры воспаления при хронической обструктивной болезни легких


https://doi.org/10.18093/0869-0189-2012-0-2-108-117

Полный текст:


Аннотация

Биомаркеры воспаления при хронической обструктивной болезни легких.


Об авторах

И. В. Лещенко
ГБОУ ВПО "Уральская государственная медицинская академия" Минздравсоцразвития РФ
Россия

д. м. н., проф. кафедры пульмонологии и фтизиатрии 

620028, Екатеринбург, ул. Репина, 3. Тел. / факс: (343) 246-44-75.



И. И. Баранова
ООО "Медицинское объединение "Новая больница"
Россия

врач-пульмонолог пульмонологического отделения 

620109, Екатеринбург, ул. Заводская, 29. Тел: (343) 242-48-42.



Список литературы

1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. NHLBI / WHO workshop repot Updated 2010. www.goldcopd.com

2. Seemungal T.A., Hurst J.R., Wedzicha J.A. Exacerbation rate, health status and mortality in COPD – a review of potential interventions. Int. J. Chron. Obstruct. Pulm. Dis. 2009; 4: 203–223.

3. Barnes P.J., Ito K., Adcock I.M. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 2004; 363: 731–733.

4. Vestbo J., Anderson W., Coxson H.O. et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). Eur. Respir. J. 2008; 31: 869–873.

5. Celli B.R., Cote C.G., Marin J.M. et al. The body-mass index, airflow obstruction, dyspnoea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 1005–1012.

6. Rabe K.F., Hurd S., Anzueto A. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. GOLD executive summary. Am. J. Respir. Crit. Care Med. 2007; 176: 532–555.

7. Celli B.R., MacNee W., ATS / ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS / ERS position paper. Eur. Respir. J. 2004; 23: 932–946.

8. Perng D.W., Huang H.Y., Chen H.M. et al. Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest 2004; 126: 375–381.

9. Franciosi L.G., Page C.P., Celli B.R. et al. Markers of exacerbation severity in chronic obstructive pulmonary disease. Respir. Res. 2006; 7: 74.

10. Barnes P.J., Chowdhury B., Kharitonov S.A. et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006; 174: 6–14.

11. Di Stefano A., Capelli A., Lusuardi M. et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am. J. Respir. Crit. Care Med. 1998; 158: 1277–1285.

12. Gamble E., Grootendorst D.C., Brightling C.E. et al. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003; 168: 976–982.

13. Hattotuwa K., Gamble E.A., O'Shaughnessy T. et al. Safety of bronchoscopy, biopsy, and BAL in research patients with COPD. Chest 2002; 122: 1909–1912.

14. Culpitt S.V., Rogers D.F., Shah P. et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003; 167: 24–31.

15. Pesci A., Balbi B., Majori M. et al. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur. Respir. J. 1998; 12: 380–386.

16. Ekberg*Jansson A., Andersson B., Bake B. et al. Neutrophilassociated activation markers in healthy smokers relates to a fall in DL, CO and to emphysematous changes on high resolution CT. Respir. Med. 2001; 95: 363–373.

17. Tsoumakidou M., Tzanakis N., Siafakas N.M. Induced sputum in the investigation of airway inflammation of COPD. Respir. Med. 2003; 97: 863–871.

18. Taube C., Holz O., Mucke M. et al. Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 164: 1810–1815.

19. Kelly M.M., Keatings V., Leigh R. et al. Analysis of fluidphase mediators. Eur. Respir. J. 2002; 20 (Suppl. 37): 24s–39s.

20. Kharitonov S.A., Barnes P.J. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002; 7: 1–32.

21. ATS / ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005; 171: 912–930.

22. Bhowmik A., Seemungal T.A., Donaldson G.C., Wedzicha J.A. Effects of exacerbations and seasonality on exhaled nitric oxide in COPD. Eur. Respir. J. 2005; 26: 1009–1015.

23. Paredi P., Kharitonov S.A., Leak D. et al. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000; 162: 369–373.

24. Montuschi P., Barnes P.J. Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol. Sci. 2002; 23: 232–237.

25. Gan W.Q., Man S.F., Senthilselvan A., Sin D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004; 59: 574–580.

26. Fanjul*Fernandez M., Folgueras A.R., Cabrera S. et al. Matrixmetalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta 2010; 1803: 3–19.

27. Klein T., Bischoff R. Physiology and pathophysiology of matrixmetalloproteases. Amino Acids 2011; 41: 271–290.

28. Rodriguez D., Morrison C.J., Overall C.M. Matrix metalloproteinases:what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 2010; 1803: 39–54.

29. Vanlaere I., Libert C. Matrix metalloproteinases as drug targets ininfections caused by gram-negative bacteria and in septic shock. Clin. Microbiol. Rev. 2009; 22: 224–239.

30. Dejonckheere E., Vandenbroucke R.E., Libert C. Matrix metalloproteinase-8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev. 2011; 22: 73–81.

31. Oikonomidi S., Kostikas K., Tsilioni I. et al. Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr. Med. Chem. 2009; 16: 1214–1228.

32. Baraldo S., Bazzan E., Zanin M.E. et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest 2007; 132: 1733–1740.

33. Lim S., Roche N., Oliver B.G. et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am. J. Respir. Crit. Care Med. 2000; 162: 1355–1360.

34. Churg A., Dai J., Zay K. et al. Alpha-1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab. Invest. 2001; 81: 1119–1131.

35. Wagner P.D. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J. 2008; 31: 492–501.

36. Schols A.M., Broekhuizen R., Weling*Scheepers C.A. et al. Body composition and mortality in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2005; 82: 53–59.

37. Debigare R., Cote C.H., Maltais F. Peripheral muscle wasting in chronic obstructive pulmonary disease. Clinical relevance and mechanisms. Am. J. Respir. Crit. Care Med. 2001; 164: 1712–1717.

38. Di Francia M., Barbier D., Mege J.L. et al. Tumor necrosis factoralpha levels and weight loss in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1994; 150: 1453–1455.

39. Takabatake N., Nakamura H., Abe S. et al. Circulating leptin in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999; 159: 1215–1219.

40. Eid A.A., Ionescu A.A., Nixon L.S. et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 164: 1414–1418.

41. Itoh T., Nagaya N., Yoshikawa M. et al. Elevated plasma ghrelin level in underweight patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170: 879–882.

42. Broekhuizen R., Grimble R.F., Howell W.M. et al. Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1beta-511 single nucleotide polymorphism. Am. J. Clin. Nutr. 2005; 82: 1059–1064.

43. Van Helvoort H.A., Heijdra Y.F., Thijs H.M. et al. Exerciseinduced systemic effects in muscle-wasted patients with COPD. Med. Sci. Sports Exerc. 2006; 38: 1543–1552.

44. Shin K.C., Chung J.H., Lee K.H. Effects of TNF-alpha and leptin on weight loss in patients with stable chronic obstructive pulmonary disease. Korean J. Intern. Med. 2007; 22: 249–255.

45. Kurosaki H., Ishii T., Motohashi N. et al. Extent of emphysema on HRCT affects loss of fat-free mass and fat mass in COPD. Intern. Med. 2009; 48: 41–48.

46. Eagan T.M.L., Aukrust P., Ueland T. et al. Body composition and plasma levels of inflammatory biomarkers in COPD. Eur. Respir. J. 2010; 36: 1027–1033.

47. Barnes P.J., Celli B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009; 33: 1165–1185.

48. Wouters E.F., Creutzberg E.C., Schols A.M. Systemic effects in COPD. Chest 2002; 121 (Suppl. 5): 127S–130S.

49. Broekhuizen R., Vernooy J.H., Schols A.M. et al. Leptin as local inflammatory marker in COPD. Respir. Med. 2005; 99: 70–74.

50. Bolton C.E., Ionescu A.A., Shiels K.M. et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170: 1286–1293.

51. Graat*Verboom L., Spruit M.A., van den Borne B.E. et al. Correlates of osteoporosis in chronic obstructive pulmonary disease: An underestimated systemic component. Respir. Med. 2009; 103: 1143–1151.

52. Andreeva A.V., Kutuzov M.A., Voyno*Yasenetskaya T.A. Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007; 293: L259–L271.

53. Dietl P., Haller T. Exocytosis of lung surfactant: from the secretory vesicle to the air-liquid interface. Ann. Rev. Physiol. 2005; 67: 595–621.

54. Wilder M.A. Surfactant protein B deficiency in infants with respiratory failure. J. Perinat. Neonatal. Nurs. 2004; 18: 61–67.

55. Kishore U., Bernal A.L., Kamran M.F. et al. Surfactant proteins SP-A and SP-D in human health and disease. Arch. Immunol. Ther. Exp. (Warsz) 2005; 53: 399–417.

56. Haczku A. Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. J. Allergy Clin. Immunol. 2008; 122: 861–879.

57. Pastva A.M., Walker J.K., Maddox L.A. et al. Nitric oxide mediates a relative airway hyporesponsiveness to lipopolysaccharide in surfactant protein-A deficient mice. Am. J. Respir. Cell. Mol. Biol. 2011; 44: 175–184.

58. Seppanen O., Glumoff V., Paananen R. et al. Transcription factors NF-kB and C/EBPd and IL-1-induced expression of surfactant protein A in lung explants during the perinatal period. Biol. Neonatal. 2005; 87: 152–159.

59. Shibata Y., Abe S., Inoue S. et al. Altered expression of antimicrobial molecules in cigarette smoke-exposed emphysematous mice lungs. Respirology 2008; 13: 1061–1065.

60. Beeh K.M., Beier J., Kornmann O. et al. Long-term repeatability of induced sputum cells and inflammatory markers in stable, moderately severe COPD. Chest 2003; 123: 778–783.

61. Ohlmeier S., Vuolanto M., Toljamo T. et al. Proteomics of human lung tissue identifies surfactant protein A as a marker of chronic obstructive pulmonary disease. J. Prot. Res. 2008; 7: 5125–5132.

62. Kobayashi H., Kanoh S., Motoyoshi K. Serum surfactant protein-A, but not surfactant protein-D or KL-6, can predict preclinical lung damage induced by smoking. Biomarkers 2008; 13: 385–392.

63. Kishore U., Greenhough T.J., Waters P. et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol. Immunol. 2006; 43: 1293–1315.

64. Sin D.D., Man S.F.P., Marciniuk D.D. et al. The effects of fluticasone with or without salmeterol on systemic biomarkers of inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008; 177: 1207–1214.

65. Apweiler R., Aslanidis C., Deufel T. et al. Аpproaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin. Chem. Lab. Med. 2009; 47 (6): 724–744.

66. Ponten F., Gry M., Fagerberg L. et al. A global view of protein expression in human cells, tissues and organs. Mol. Sys. Biol. 2009. Epub ahead of print.

67. Sin D.D., Wu L., Anderson J.A., et al. Inhaled corticosteroids and mortality in chronic obstructive pulmonary disease. Thorax 2005; 60: 992–997.

68. Lomas D.A., Silverman E.K., Edwards L.D. et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur. Respir. J. 2009; 34: 95–102.

69. Cao Y., Grous M., Scanlon S.T. et al. The innate immune molecule surfactant protein (SP)-D is up regulated in the lung following cigarette smoke (CS) exposure in a murine model. Am. J. Respir. Crit. Care Med. 2004; 169: A832.

70. Sin D.D., Leung R., Gan W.Q. et al. Circulating surfactant protein D as a potential lung–specific biomarker of health outcomes in COPD: a pilot study. BMC Pulm. Med. 2007; 7: 13.

71. Papi A., Bellettato C.M., Braccioni F. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Respir. Crit. Care Med. 2006; 173: 1114–1121.

72. Celli B.R., Barnes P.J. Exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 2007; 29: 1224–1238.


Дополнительные файлы

Для цитирования: Лещенко И.В., Баранова И.И. Биомаркеры воспаления при хронической обструктивной болезни легких.  Пульмонология. 2012;(2):108-117. https://doi.org/10.18093/0869-0189-2012-0-2-108-117

For citation: Leshchenko I.V., Baranova I.I. Inflammatory biomarkers in chronic obstructive pulmonary disease. Russian Pulmonology. 2012;(2):108-117. (In Russ.) https://doi.org/10.18093/0869-0189-2012-0-2-108-117

Просмотров: 412

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)