Preview

Пульмонология

Расширенный поиск

Измерение оксида азота в выдыхаемом воздухе для диагностики бронхолегочных заболеваний

Аннотация

По материалам: Dweik R.A., Boggs P.B., Erzurum S.C. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011; 184 (5): 602–615.

Сегодня оксид азота (NO) известен как биологический медиатор в организме животных и человека. У человека NO вырабатывается в легких и присутствует в выдыхаемом воздухе. Он участвует в патофизиологии легочных заболеваний, включая бронхиальную астму (БА). Измерение выдыхаемого NO стандартизовано для клинического применения. Использование измерения NO в клинической практике имеет обширную доказательную базу. Определены критерии выполнения этого исследования, его преимущества и недостатки. Данные клинические рекомендации основаны на полученных доказательствах и разработаны для того, чтобы помочь клиницистам использовать и интерпретировать уровень фракции оксида азота в выдыхаемом воздухе (FENO).

Об авторе

статья Редакционная

Россия


Список литературы

1. Ignarro L.J., Buga G.M., Wood K.S. et al. Endotheliumderived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 1987; 84: 9265–9269.

2. Palmer R.M., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

3. Nathan C., Xie Q.W. Nitric oxide synthases: roles, tolls, and controls. Cell 1994; 78: 915–918.

4. Dweik R.A., Comhair S.A., Gaston B. et al. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc. Natl Acad. Sci. USA 2001; 98: 2622–2627.

5. Guo F.H., Comhair S.A., Zheng S. et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and posttranslational regulation of NO synthesis. J. Immunol. 2000; 164: 5970–5980.

6. Ricciardolo F.L. Multiple roles of nitric oxide in the airways. Thorax 2003; 58: 175–182.

7. Khatri S.B., Hammel J., Kavuru M.S. et al. Temporal association of nitric oxide levels and airflow in asthma after whole lung allergen challenge. J. Appl. Physiol. 2003; 95: 436–440; discuss.: 435.

8. Khatri S.B., Ozkan M., McCarthy K. et al. Alterations in exhaled gas profile during allergeninduced asthmatic response. Am. J. Respir. Crit. Care Med. 2001; 164: 1844–1848.

9. Reid D.W., Johns D.P., Feltis B. et al. Exhaled nitric oxide continues to reflect airway hyperresponsiveness and disease activity in inhaled corticosteroid-treated adult asthmatic patients. Respirology 2003; 8: 479–486.

10. De Sanctis G.T., MacLean J.A., Hamada K. et al. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J. Exp. Med. 1999; 189: 1621–1630.

11. Lane C., Knight D., Burgess S. et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004; 59: 757–760.

12. Guo F.H., De Raeve H.R., Rice T.W. et al. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc. Natl Acad. Sci. USA 1995; 92: 7809–7813.

13. Guo F.H., Erzurum S.C. Characterization of inducible nitric oxide synthase expression in human airway epithelium. Environ Hlth Perspect. 1998; 106: 1119–1124.

14. Dweik R.A., Erzurum S.C. Regulation of nitric oxide (NO) synthases and gas phase NO by oxygen. In: Marczin N., Kharitonov S.A., Yacoub M.H., Barnes P.J., eds. Disease markers in exhaled breath (lung biology in health and disease). New York: Marcel Dekker Inc.; 2003. 235–246.

15. Hansel T.T., Kharitonov S.A., Donnelly L.E. et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 2003; 17: 1298–1300.

16. Guo F.H., Uetani K., Haque S.J. et al. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. J. Clin. Invest. 1997; 100: 829–838.

17. Gustafsson L.E., Leone A.M., Persson M.G. et al. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem. Biophys. Res. Commun. 1991; 181: 852–857.

18. Alving K., Weitzberg E., Lundberg J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993; 6: 1368–1370.

19. Kharitonov S.A., Yates D., Robbins R.A. et al. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994; 343: 133–135.

20. Gaston B., Drazen J., Chee C.B.E. et al. Expired nitric oxide concentrations are elevated in patients with reactive airways disease. Endothelium 1993; 1: 87–92.

21. Silkoff P.E., McClean P., Spino M. et al. Dose-response relationship and reproducibility of the fall in exhaled nitric oxide after inhaled beclomethasone dipropionate therapy in asthma patients. Chest 2001; 119: 1322–1328.

22. Ozkan M., Dweik R.A. Nitric oxide and airway reactivity. Clin. Pulm. Med. 2001; 8: 199–206.

23. Smith A.D., Cowan J.O., Filsell S. et al. Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am. J. Respir. Crit. Care Med. 2004; 169: 473–478.

24. Khalili B., Boggs P.B., Shi R., Bahna S.L. Discrepancy between clinical asthma control assessment tools and fractional exhaled nitric oxide. Ann. Allergy Asthma Immunol. 2008; 101: 124–129.

25. Dweik R.A. The promise and reality of nitric oxide in the diagnosis and treatment of lung disease. Cleveland Clin. J. Med. 2001; 68: 486, 488, 490, 493.

26. American Thoracic Society. Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. Am. J. Respir. Crit. Care Med. 1999; 160: 2104–2117.

27. American Thoracic Society / European Respiratory Society. ATS / ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005; 171: 912–930.

28. Grob N.M., Dweik R.A. Exhaled nitric oxide in asthma. From diagnosis, to monitoring, to screening: are we there yet? Chest 2008; 133: 837–839.

29. Guyatt G., Vist G., Falck-Ytter Y. et al. An emerging consensus on grading recommendations? Evid. Based Med. 2006; 11: 2–4.

30. Schunemann H.J., Jaeschke R., Cook D.J. et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am. J. Respir. Crit. Care Med. 2006; 174: 605–614.

31. Cowan D.C., Cowan J.O., Palmay R. et al. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010; 65: 384–390.

32. Wenzel S.E. Phenotypes in asthma: useful guides for therapy, distinct biological processes, or both? Am. J. Respir. Crit. Care Med. 2004; 170: 579–580.

33. Moore W.C., Bleecker E.R., Curran-Everett D. et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. J. Allergy Clin. Immunol. 2007; 119: 405–413.

34. Moore W.C., Meyers D.A., Wenzel S.E. et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am. J. Respir. Crit. Care Med. 2010; 181: 315–323.

35. Dweik R.A., Sorkness R.L., Wenzel S. et al. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am. J. Respir. Crit. Care Med. 2010; 181: 1033–1041.

36. Mattes J., Storm van's Gravesande K., Reining U. et al. NO in exhaled air is correlated with markers of eosinophilic airway inflammation in corticosteroid-dependent childhood asthma. Eur. Respir. J. 1999; 13: 1391–1395.

37. Bousquet J., Chanez P., Lacoste J.Y. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 1990; 323: 1033–1039.

38. Green R.H., Brightling C.E., McKenna S. et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002; 360: 1715–1721.

39. Berry M.A., Shaw D.E., Green R.H. et al. The use of exhaled nitric oxide concentration to identify eosinophilic airway inflammation: an observational study in adults with asthma. Clin. Exp. Allergy 2005; 35: 1175–1179.

40. Warke T.J., Fitch P.S., Brown V. et al. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. Thorax 2002; 57: 383–387.

41. Silkoff P.E., Lent A.M., Busacker A.A. et al. Exhaled nitric oxide identifies the persistent eosinophilic phenotype in severe refractory asthma. J. Allergy Clin. Immunol. 2005; 116: 1249–1255.

42. Brown H.M. Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet 1958; 2: 1245–1247.

43. Paoliello-Paschoalato A.B., Oliveira S.H., Cunha F.Q. Interleukin 4 induces the expression of inducible nitric oxide synthase in eosinophils. Cytokine 2005; 30: 116–124.

44. Barreto M., Villa M.P., Monti F. et al. Additive effect of eosinophilia and atopy on exhaled nitric oxide levels in children with or without a history of respiratory symptoms. Pediatr. Allergy Immunol. 2005; 16: 52–58.

45. Strunk R.C., Szefler S.J., Phillips B.R. et al. Relationship of exhaled nitric oxide to clinical and inflammatory markers of persistent asthma in children. J. Allergy Clin. Immunol. 2003; 112: 883–892.

46. van den Toorn L.M., Overbeek S.E., de Jongste J.C. et al. Airway inflammation is present during clinical remission of atopic asthma. Am. J. Respir. Crit. Care Med. 2001; 164: 2107–2113.

47. Payne D.N., Adcock I.M., Wilson N.M. et al. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am. J. Respir. Crit. Care Med. 2001; 164: 1376–1381.

48. Lim S., Jatakanon A., Meah S. et al. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in mild to moderately severe asthma. Thorax 2000; 55: 184–188.

49. Jatakanon A., Lim S., Kharitonov S.A. et al. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 1998; 53: 91–95.

50. Jones S.L., Kittelson J., Cowan J.O. et al. The predictive value of exhaled nitric oxide measurements in assessing changes in asthma control. Am. J. Respir. Crit. Care Med. 2001; 164: 738–743.

51. Shaw D.E., Berry M.A., Thomas M. et al. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. Am. J. Respir. Crit. Care Med. 2007; 176: 231–237.

52. Porsbjerg C., Lund T.K., Pedersen L., Backer V. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J. Asthma 2009; 46: 606–612.

53. Fabbri L.M., Romagnoli M., Corbetta L. et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003; 167: 418–424.

54. Brightling C.E., Symon F.A., Birring S.S. et al. Comparison of airway immunopathology of eosinophilic bronchitis and asthma. Thorax 2003; 58: 528–532.

55. Szefler S.J., Martin R.J. Lessons learned from variation in response to therapy in clinical trials. J. Allergy Clin. Immunol. 2010; 125: 285–292; quiz.: 293–294.

56. Smith A.D., Cowan J.O., Brassett K.P. et al. Exhaled nitric oxide: a predictor of steroid response. Am. J. Respir. Crit. Care Med. 2005; 172: 453–459.

57. Szefler S.J., Martin R.J., King T.S. et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J. Allergy Clin. Immunol. 2002; 109: 410–418.

58. Knuffman J.E., Sorkness C.A., Lemanske R.F. et al. Phenotypic predictors of long-term response to inhaled corticosteroid and leukotriene modifier therapies in pediatric asthma. J. Allergy Clin. Immunol. 2009; 123: 411–416.

59. Pijnenburg M.W., Hofhuis W., Hop W.C., De Jongste J.C. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax 2005; 60: 215–218.

60. Zacharasiewicz A., Wilson N., Lex C. et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am. J. Respir. Crit. Care Med. 2005; 171: 1077–1082.

61. Deykin A., Massaro A.F., Drazen J.M., Israel E. Exhaled nitric oxide as a diagnostic test for asthma: online versus offline techniques and effect of flow rate. Am. J. Respir. Crit. Care Med. 2002; 165: 1597–1601.

62. Berkman N., Avital A., Breuer R. et al. Exhaled nitric oxide in the diagnosis of asthma: comparison with bronchial provocation tests. Thorax 2005; 60: 383–388.

63. Ihre E., Gustafsson L.E., Kumlin M. et al. Early rise in exhaled no and mast cell activation in repeated low dose allergen challenge. Eur. Respir. J. 2006; 27: 1152–1159.

64. Meurs H., Maarsingh H., Zaagsma J. Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol. Sci. 2003; 24: 450–455.

65. Dupont L.J., Rochette F., Demedts M.G., Verleden G.M. Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma. Am. J. Respir. Crit. Care Med. 1998; 157: 894–898.

66. Gronke L., Kanniess F., Holz O. et al. The relationship between airway hyper-responsiveness, markers of inflammation and lung function depends on the duration of the asthmatic disease. Clin. Exp. Allergy 2002; 32: 57–63.

67. Lapperre T.S., Snoeck-Stroband J.B., Gosman M.M. et al. Dissociation of lung function and airway inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004; 170: 499–504.

68. Rosi E., Ronchi M.C., Grazzini M. et al. Sputum analysis, bronchial hyperresponsiveness, and airway function in asthma: results of a factor analysis. J. Allergy Clin. Immunol. 1999; 103: 232–237.

69. Olin A.C., Bake B., Toren K. Fraction of exhaled nitric oxide at 50 mL/s: reference values for adult lifelong neversmokers. Chest 2007; 131: 1852–1856.

70. Arora R., Thornblade C.E., Dauby P.A. et al. Exhaled nitric oxide levels in military recruits with new onset asthma. Allergy Asthma Proc. 2006; 27: 493–498.

71. Deykin A., Massaro A.F., Coulston E. et al. Exhaled nitric oxide following repeated spirometry or repeated plethysmography in healthy individuals. Am. J. Respir. Crit. Care Med. 2000; 161: 1237–1240.

72. Dupont L.J., Demedts M.G., Verleden G.M. Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 2003; 123: 751–756.

73. Olin A.C., Rosengren A., Thelle D.S. et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest 2006; 130: 1319–1325.

74. Borrill Z., Clough D., Truman N. et al. A comparison of exhaled nitric oxide measurements performed using three different analysers. Respir. Med. 2006; 100: 1392–1396.

75. Kharitonov S.A., Gonio F., Kelly C. et al. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur. Respir. J. 2003; 21: 433–438.

76. Buchvald F., Baraldi E., Carraro S. et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J. Allergy Clin. Immunol. 2005; 115: 1130–1136.

77. Olivieri M., Talamini G., Corradi M. et al. Reference values for exhaled nitric oxide (reveno) study. Respir. Res. 2006; 7: 94.

78. Travers J., Marsh S., Aldington S. et al. Reference ranges for exhaled nitric oxide derived from a random community survey of adults. Am. J. Respir. Crit. Care Med. 2007; 176: 238–242.

79. Dressel H., de la Motte D., Reichert J. et al. Exhaled nitric oxide: independent effects of atopy, smoking, respiratory tract infection, gender and height. Respir. Med. 2008; 102: 962–969.

80. Baraldi E., Azzolin N.M., Cracco A., Zacchello F. Reference values of exhaled nitric oxide for healthy children 6–15 years old. Pediatr. Pulmonol. 1999; 27: 54–58.

81. Kovesi T., Kulka R., Dales R. Exhaled nitric oxide concentration is affected by age, height, and race in healthy 9- to 12-year-old children. Chest 2008; 133: 169–175.

82. Wong G.W., Liu E.K., Leung T.F. et al. High levels and gender difference of exhaled nitric oxide in Chinese schoolchildren. Clin. Exp. Allergy 2005; 35: 889–893.

83. Malmberg L.P., Petays T., Haahtela T. et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr. Pulmonol. 2006; 41: 635–642.

84. Taylor D.R., Mandhane P., Greene J.M. et al. Factors affecting exhaled nitric oxide measurements: the effect of sex. Respir. Res. 2007; 8: 82.

85. Meijer R.J., Postma D.S., Kauffman H.F. et al. Accuracy of eosinophils and eosinophil cationic protein to predict steroid improvement in asthma. Clin. Exp. Allergy 2002; 32: 1096–1103.

86. Szefler S.J., Phillips B.R., Martinez F.D. et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J. Allergy Clin. Immunol. 2005; 115: 233–242.

87. Pijnenburg M.W., Bakker E.M., Lever S. et al. High fractional concentration of nitric oxide in exhaled air despite steroid treatment in asthmatic children. Clin. Exp. Allergy 2005; 35: 920–925.

88. Piacentini G.L., Bodini A., Costella S. et al. Allergen avoidance is associated with a fall in exhaled nitric oxide in asthmatic children. J. Allergy Clin. Immunol. 1999; 104: 1323–1324.

89. Vahlkvist S., Sinding M., Skamstrup K., Bisgaard H. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure. J. Allergy Clin. Immunol. 2006; 117: 1272–1276.

90. Pedroletti C., Millinger E., Dahlen B. et al. Clinical effects of purified air administered to the breathing zone in allergic asthma: a double-blind randomized cross-over trial. Respir. Med. 2009; 103: 1313–1319.

91. Bodini A., Peroni D., Loiacono A. et al. Exhaled nitric oxide daily evaluation is effective in monitoring exposure to relevant allergens in asthmatic children. Chest 2007; 132: 1520–1525.

92. Smith A.D., Cowan J.O., Taylor D.R. Exhaled nitric oxide levels in asthma: personal best versus reference values. J. Allergy Clin. Immunol. 2009; 124: 714–718.

93. Buchvald F., Eiberg H., Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. Clin. Exp. Allergy 2003; 33: 1735–1740.

94. Gelb A.F., Flynn Taylor C., Shinar C.M. et al. Role of spirometry and exhaled nitric oxide to predict exacerbations in treated asthmatics. Chest 2006; 129: 1492–1499.

95. Szefler S.J., Mitchell H., Sorkness C.A. et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Lancet 2008; 372: 1065–1072.

96. Ekroos H., Karjalainen J., Sarna S. et al. Shortterm variability of exhaled nitric oxide in young male patients with mild asthma and in healthy subjects. Respir. Med. 2002; 96: 895–900.

97. Pijnenburg M.W., Floor S.E., Hop W.C., De Jongste J.C. Daily ambulatory exhaled nitric oxide measurements in asthma. Pediatr. Allergy Immunol. 2006; 17: 189–193.

98. Massaro A.F., Gaston B., Kita D. et al. Expired nitric oxide levels during treatment of acute asthma. Am. J. Respir. Crit. Care Med. 1995; 152: 800–803.

99. Beck-Ripp J., Griese M., Arenz S. et al. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. Eur. Respir. J. 2002; 19: 1015–1019.

100. Michils A., Baldassarre S., Van Muylem A. Exhaled nitric oxide and asthma control: a longitudinal study in unselected patients. Eur. Respir. J. 2008; 31: 539–546.

101. de Jongste J.C., Carraro S., Hop W.C., Baraldi E. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. Am. J. Respir. Crit. Care Med. 2009; 179: 93–97.

102. Petsky H.L., Cates C.J., Lasserson T.J. et al. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax 2010.

103. Smith A.D., Cowan J.O., Brassett K.P. et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N. Engl. J. Med. 2005; 352: 2163–2173.

104. Gibson P.G. Using fractional exhaled nitric oxide to guide asthma therapy: design and methodological issues for ASthma Treatment ALgorithm studies. Clin. Exp. Allergy 2009; 39: 478–490.

105. Perez-de-Llano L.A., Carballada F., Castro Anon O. et al. Exhaled nitric oxide predicts control in patients with difficult-to-treat asthma. Eur. Respir. J. 2010; 35: 1221–1227.

106. Barnes P.J., Dweik R.A., Gelb A.F. et al. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest 2010; 138: 682–692.

107. Pizzichini E., Pizzichini M.M., Gibson P. et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am. J. Respir. Crit. Care Med. 1998; 158: 1511–1517.

108. Brightling C.E., Monteiro W., Ward R. et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2000; 356: 1480–1485.

109. Zietkowski Z., Kucharewicz I., Bodzenta-Lukaszyk A. The influence of inhaled corticosteroids on exhaled nitric oxide in stable chronic obstructive pulmonary disease. Respir. Med. 2005; 99: 816–824.

110. de Laurentiis G., Maniscalco M., Cianciulli F. et al. Exhaled nitric oxide monitoring in COPD using a portable analyzer. Pulm. Pharmacol. Ther. 2008; 21: 689–693.

111. Dummer J.F., Epton M.J., Cowan J.O. et al. Predicting corticosteroid response in chronic obstructive pulmonary disease using exhaled nitric oxide. Am. J. Respir. Crit. Care Med. 2009; 180: 846–852.

112. Lehtimaki L., Kankaanranta H., Saarelainen S. et al. Bronchial nitric oxide is related to symptom relief during fluticasone treatment in COPD. Eur. Respir. J. 2010; 35: 72–78.

113. Giaid A., Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 1995; 333: 214–221.

114. Ghamra Z.W., Dweik R.A. Primary pulmonary hypertension: an overview of epidemiology and pathogenesis. Cleveland Clin. J. Med. 2003; 70: S2–S8.

115. Mayer B., Pfeiffer S., Schrammel A. et al. A new pathway of nitric oxide / cyclic GMP signaling involving S-nitrosoglutathione. J. Biol. Chem. 1998; 273: 3264–3270.

116. Kim S.F., Huri D.A., Snyder S.H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 2005; 310: 1966–1970.

117. Schmidt H.H., Hofmann H., Schindler U. et al. NO from NO synthase. Proc. Natl Acad. Sci. USA 1996; 93: 14492–14497.

118. Lim K.H., Ancrile B.B., Kashatus D.F., Counter C.M. Tumour maintenance is mediated by eNOS. Nature 2008; 452: 646–649.

119. Gaston B., Singel D., Doctor A., Stamler J.S. S-nitrosothiol signaling in respiratory biology. Am. J. Respir. Crit. Care Med. 2006; 173: 1186–1193.

120. Moya M.P., Gow A.J., Califf R.M. et al. Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn. Lancet 2002; 360: 141–143.

121. Archer S., Rich S. Primary pulmonary hypertension: a vascular biology and translational research "Work in progress". Circulation 2000; 102: 2781–2791.

122. Dweik R. Pulmonary hypertension and the search for the selective pulmonary vasodilator. Lancet 2002; 360: 886.

123. Kaneko F.T., Arroliga A.C., Dweik R.A. et al. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1998; 158: 917–923.

124. Dweik R.A. The lung in the balance: arginine, methylated arginines, and nitric oxide. Am. J. Physiol. Lung Cell Mol. Physiol. 2007; 292: L15–L17.

125. Ozkan M., Dweik R.A., Laskowski D. et al. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung 2001; 179: 233–243.

126. Girgis R.E., Champion H.C., Diette G.B. et al. Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to bosentan therapy. Am. J. Respir. Crit. Care Med. 2005; 172: 352–357.

127. Machado R.F., Londhe Nerkar M.V., Dweik R.A. et al. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic. Biol. Med. 2004; 37: 1010–1017.

128. Lundberg J.O.N., Farkas-Szallasi T., Weitzberg E. et al. High nitric oxide production in human paranasal sinuses. Nature Med. 1995; 1: 370–373.

129. Lundberg J.O., Weitzberg E., Nordvall S.L. et al. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener's syndrome. Eur. Respir. J. 1994; 7: 1501–1504.

130. Palm J.P., Graf P., Lundberg J.O., Alving K. Characterization of exhaled nitric oxide: introducing a new reproducible method for nasal nitric oxide measurements. Eur. Respir. J. 2000; 16: 236–241.

131. Lundberg J.O.N., Nordvall S.L., Weitzberg E. et al. Exhaled NO in pediatric asthma and cystic fibrosis. Arch. Dis. Child. 1996; 75: 323–326.

132. Balfour-Lynn I.M., Laverty A., Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch. Dis. Child. 1996; 75: 319–322.

133. Arnal J.F., Didier A., Rami J. et al. Nasal nitric oxide is increased in allergic rhinitis. Clin. Exp. Allergy 1997; 27: 358–362.

134. Kharitonov S.A., Rajakulasingam K., O'Connor B. et al. Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J. Allergy Clin. Immunol. 1997; 99: 58–64.

135. Horvath I., Loukides S., Wodehouse T. et al. Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax 2003; 58: 68–72.

136. Karadag B., James A.J., Gultekin E. et al. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur. Respir. J. 1999; 13: 1402–1405.

137. Wodehouse T., Kharitonov S.A., Mackay I.S. et al. Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia. Eur. Respir. J. 2003; 21: 43–47.

138. Bodini A., Rugolotto S., Pradal U. et al. Nasal nitric oxide for early diagnosis of familial primary ciliary dyskinesia. Arch. Dis. Child. 2008; 93: 452–453.

139. Stehling F., Roll C., Ratjen F., Grasemann H. Nasal nitric oxide to diagnose primary ciliary dyskinesia in newborns. Arch. Dis. Child. Fetal Neonatal. Ed. 2006; 91: F233.

140. Zheng S., Xu W., Bose S. et al. Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am. J. Physiol. Lung Cell Mol. Physiol 2004; 287: L374–L381.

141. Kelley T.J., Drumm M.L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J. Clin. Invest. 1998; 102: 1200–1207.

142. Meng Q.H., Springall D.R., Bishop A.E. et al. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J. Pathol. 1998; 184: 323–331.

143. Grasemann H., Kurtz F., Ratjen F. Inhaled L-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2006; 174: 208–212.

144. Jones K.L., Hegab A.H., Hillman B.C. et al. Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr. Pulmonol. 2000; 30: 79–85.

145. Snyder A.H., McPherson M.E., Hunt J.F. et al. Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2002; 165: 922–926.

146. Yoon S.S., Coakley R., Lau G.W. et al. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J. Clin. Invest. 2006; 116: 436–446.

147. Gaston B., Ratjen F., Vaughan J.W. et al. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am. J. Respir. Crit. Care Med. 2002; 165: 387–390.

148. Lara A., Khatri S.B., Wang Z. et al. Alterations of the arginine metabolome in asthma. Am. J. Respir. Crit. Care Med. 2008; 178: 673–681.

149. Ferrazzoni S., Scarpa M.C., Guarnieri G. et al. Exhaled nitric oxide and breath condensate ph in asthmatic reactions induced by isocyanates. Chest 2009; 136: 155–162.

150. Hewitt R.S., Smith A.D., Cowan J.O. et al. Serial exhaled nitric oxide measurements in the assessment of laboratory animal allergy. J. Asthma 2008; 45: 101–107.

151. Reddel H.K., Taylor D.R., Bateman E.D. et al. An official American Thoracic Society / European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am. J. Respir. Crit. Care Med. 2009; 180: 59–99.

152. Hankinson J.L., Odencrantz J.R., Fedan K.B. Spirometric reference values from a sample of the general US population. Am. J. Respir. Crit. Care Med. 1999; 159: 179–187.


Рецензия

Для цитирования:


Измерение оксида азота в выдыхаемом воздухе для диагностики бронхолегочных заболеваний. Пульмонология. 2012;(1):11-26.

For citation:


  Measurement of nitric oxide in the exhaled breath in diagnosis of pulmonary disease. PULMONOLOGIYA. 2012;(1):11-26. (In Russ.)

Просмотров: 1611


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)