A role of probe-based confocal laser endomicroscopy for diagnosis of pulmonary alveolar proteinosis
https://doi.org/10.18093/0869-0189-2015-25-1-33-40
Abstract
Introduction. Probe-based confocal laser endomicroscopy (pCLE) of distal airways is a new technology allowing visualization of cells and structures that have autofluorescence. Endomicroscopic features of a number of rare lung diseases including pulmonary alveolar proteinosis (PAP) has not been yet investigated. The purpose of the study was to describe endomicroscopic features of PAP before and after the whole lung lavage (WLL). Methods. pCLE was performed during bronchoscopy in 6 PAP patients before and after the WLL. In certain lung segments, pCLE was done under the HRCT control. More than 1300 endomicroscopic images have been evaluated using a semiquantitative method. Results. We found floating fluorescent amorphous aggregates sticking with alveolar macrophages in all the patients. These changes reduced after the WLL. pCLE allowed to reveal PAP characteristic features not only in lung segments with «crazy paving» HRCT sign but also in lung zones without any HRCT changes. Conclusions. pCLE can detect specific PAP features both at presence and absence of HRCT signs that confirms diffuse injury of the lung parenchyma. pCLE could be a helpful tool for diagnosis and assessment of treatment efficacy in patients with PAP.
About the Authors
O. V. DanilevskayaRussian Federation
PhD, an endoscopist of Endoscopy Department, Senior Researcher of the Scientific and Research Institute of Clinical Surgery, Federal Institution “Federal Scientific and Clinical Center of Tertiary Care and Medical Technology”, Federal Medical and Biological Agency of Russia, tel.: 8-916-981-98-53;
V. N. Lesnyak
Russian Federation
PhD, Head of Department of Roentgenology, “Federal Scientific and Clinical Center of Tertiary Care and Medical Technology”, Federal Medical and Biological Agency of Russia, tel.: 8-916-135-50-52;
A. V. Sorokina
Russian Federation
a Researcher of Division of Modern Morphological Research, “Federal Scientific and Clinical Center of Tertiary Care and Medical Technology”, Federal Medical and Biological Agency of Russia, tel.: 8-916-971-68-97;
A. G. Sotnikova
Russian Federation
a pneumologist of Department of Pulmonology, “Federal Scientific and Clinical Center of Tertiary Care and Medical Technology”, Federal Medical and Biological Agency of Russia, tel.: 8-910-446-50-83;
References
1. Borie R., Danel C., Debray M.-P. et al. Pulmonary alveolar proteinosis. Eur. Respir. Rev. 2011; 20: 98–107.
2. Seymour J.F., Preseneill J.J. Pulmonary alveolar proteinosis: Progress in the first 44 years. Am. J. Respir. Crit. Care Med. 2002; 166: 215–235.
3. Khan A., Agarwal R. Pulmonary alveolar proteinosis. Respir. Care. 2011; 56 (7): 1016–1028.
4. Inoue Y., Trapnell B.C., Tazawa R. et al. Characteristics of a large cohort of autoimmune pulmonary alveolar proteinosis patients in Japan. Am. J. Respir. Crit. Care Med. 2008; 177: 752–762.
5. Чучалин А.Г., ред. Руководство по респираторной медицине. М.: ГЭОТАР–Медиа; 2007. Т. 2.
6. Greenhill S.R., Kotton D.N. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction. Chest. 2009; 136 (2): 571–577.
7. Sarac S, Mili#ć R, Zolotarevski L. et al. Primary pulmonary alveolar proteinosis. Vojnosanit Pregl. 2012; 69 (11): 1005–1008.
8. Thiberville L., Bourg-Heckly G., Peltier E., Cave C. Per-endoscopic alveolar imaging using fluorescent confocal fibered microscopy. J. Eur. Respir. 2006; 28 (Suppl. 50): 155s–156s.
9. Thiberville L., Moreno-Swirc S., Vercauteren T. et al. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. J. Respir. Crit. Care Med. 2007; 175: 22–31.
10. Thiberville L., Sala#ün M., Lachkar S. et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. J. Eur. Respir. 2009; 33: 974–985.
11. Pauly J.L., Allison E.M., Hurley E.L. et al. Fluorescent human lung macrophages analyzed by spectral confocal laser scanning microscopy and multispectral cytometry. J. Microsc. Res. Tech. 2005; 67: 79–89.
12. Black P.N., Ching P.S., Beaumont B. et al. Changes in elastic fibres in the small airways and alveoli in COPD. J. Eur. Respir. 2008; 31: 998–1004.
13. Weibel E.R., Hsia C.C., Ochs M. How much is there really? Why stereology is essential in lung morphometry. J. Appl. Physiol. 2007; 102: 459–467.
14. Newton R.C., Kemp S.V., Yang G.Z. et al. Imaging parenchymal lung diseases with confocal endomicroscopy. Respir. Med. 2012; 106 (1): 127–137.
15. Sala#ün M., Roussel F., Hauss P.-A. et al. In vivo imaging of pulmonary alveolar proteinosis using confocal endomicroscopy. J. Eur. Respir. 2010; 36: 451–453.
16. Michaud G., Reddy C., Ernst A. Whole-lung lavage for pulmonary alveolar proteinosis. Chest. 2009; 136 (6): 1678–1681.
17. McDonnell M.J., Reynolds C., Tormey V. et al. Pulmonary alveolar proteinosis: report of two cases in the West of Ireland with review of current literature. Ir. J. Med. Sci. 2014; 183 (1): 123–127.
18. Данилевская О.В., Сорокина А.В., Аверьянов А.В. и др. Особенности проведения конфокальной лазерной эндомикроскопии дистальных дыхательных путей и принципы морфометрического анализа. Эндоскопическая хирургия. 2013; 5: 28–36.
19. Danilevskaya O., Averyanov A., Klimko N. et al. A case of diagnostics of invasive pulmonary aspergillosis using in vivo probe-based confocal laser endomicroscopy of central and distal airways. Med. Mycol. Case Reports. 2014; 5: 35–39.
20. Morisse H., Heyman L., Sala#ün M.et al. In vivo and in situ imaging of experimental invasive pulmonary aspergillosis using fibered confocal fluorescence microscopy. Med. Mycol. 2012; 50: 38
Review
For citations:
Danilevskaya O.V., Lesnyak V.N., Sorokina A.V., Sotnikova A.G. A role of probe-based confocal laser endomicroscopy for diagnosis of pulmonary alveolar proteinosis. PULMONOLOGIYA. 2015;25(1):33-40. (In Russ.) https://doi.org/10.18093/0869-0189-2015-25-1-33-40