Preview

Пульмонология

Расширенный поиск

Ингаляционные провокационные тесты для диагностики профессиональной бронхиальной астмы: рекомендации Европейского респираторного общества

https://doi.org/10.18093/0869-0189-2015-25-1-19-31

Полный текст:

Аннотация

В данном документе содержатся клинические рекомендации по проведению ингаляционных тестов для диагностики профессиональной бронхиальной астмы (ПБА). Представленные Рекомендации разработаны на основе систематического обзора литературы, исследований, проводившихся в крупных медицинских центрах Европы, материалов конференций и мнений экспертов. В статье подробно описана пошаговая процедура выполнения специфических ингаляционных провокационных тестов (СИПТ), в т. ч. требования безопасности, способы ингаляционной доставки провоцирующего вещества и методы оценки результатов. Также обсуждаются недостатки этой процедуры. Ингаляционные провокационные тесты должны выполняться только в условиях медицинских учреждений, где имеется опыт подобного тестирования. В тестах также должны использоваться контрольные провокационные вещества, доза провоцирующего вещества должна повышаться постепенно при тщательном наблюдении пациента во время исследования и как минимум в течение 6 ч после его окончания. При соблюдении всех требований побочные эффекты СИПТ встречаются редко. Положительным результатом теста считается снижение объема форсированного выдоха за 1-ю секунду на #> 15 %исх. Иногда положительный результат может объясняться неспецифической бронхиальной гиперреактивностью, эозинофилией мокроты или повышением содержания оксида азота в выдыхаемом воздухе. Ингаляционные провокационные тесты обладают высокой чувствительностью и специфичностью, поэтому считаются решающим методом диагностики ПБА.

 

Об авторе

статья Редакционная

Россия


Список литературы

1. Nicholson P.J., Cullinan P., Taylor A.J. et al. Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup. Environ. Med. 2005; 62: 290–299.

2. Tarlo S.M., Balmes J., Balkissoon R. et al. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus statement. Chest. 2008; 134 (Suppl. 3: 1S–41S.

3. Malo J.L., Vandenplas O. Definitions and classification of work-related asthma. Immunol. Allergy Clin. North Am. 2011; 31: 645–662.

4. Baur X., Sigsgaard T., Aasen T.B. et al. Guidelines for the management of work-related asthma. Eur. Respir. J. 2012; 39: 529–545.

5. Pepys J., Hutchcroft B.J. Bronchial provocation tests in etiologic diagnosis and analysis of asthma. Am. Rev. Respir. Dis. 1975; 112: 829–859.

6. Banks D.E, Tarlo S.M., Masri F. et al. Bronchoprovocation tests in the diagnosis of isocyanate-induced asthma. Chest. 1996; 109: 1370–1379.

7. Vandenplas O., Malo J.L. Inhalation challenges with agents causing occupational asthma. Eur. Respir. J. 1997; 10: 2612–2629.

8. Tarlo S.M. Laboratory challenge testing for occupational asthma. J. Allergy Clin. Immunol.2003; 111: 692–694.

9. Banks D.E. Use of the specific challenge in the diagnosis of occupational asthma: a ‘‘gold standard’’ test or a test not used in current practice of occupational asthma? Curr. Opin. Allergy Clin. Immunol. 2003; 3: 101–107.

10. Mapp C.E., Boschetto P., Maestrelli P. et al. Occupational asthma. Am. J. Respir. Crit. Care Med. 2005; 172: 280–305.

11. Vandenplas O., Cartier A., Malo J.L. Occupational challenge tests. In: Bernstein I.L., Chan-Yeung M., Malo J.L. et al, eds. Asthma in the Workplace. New York: Taylor and Francis; 2006: 227–252.

12. Cartier A., Bernstein I.L., Burge P.S. et al. Guidelines for bronchoprovocation on the investigation of occupational asthma. Report of the Subcommittee on Bronchoprovocation for Occupational Asthma. J. Allergy Clin. Immunol. 1989; 84: 823–829.

13. Sterk P.J., Fabbri L.M., Quanjer P.H. et al. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 1993; 6 (Suppl. 16): 53–83.

14. Beach J., Russell K., Blitz S. et al. A systematic review of the diagnosis of occupational asthma. Chest. 2007; 131: 569–578.

15. Ortega H.G., Weissman D.N., Carter D.L. et al. Use of specific inhalation challenge in the evaluation of workers at risk for occupational asthma: a survey of pulmonary, allergy, and occupational medicine residency training programs in the United States and Canada. Chest. 2002; 121: 1323–1328.

16. Barber C.M., Naylor S., Bradshaw L.M. et al. Approaches to the diagnosis and management of occupational asthma amongst UK respiratory physicians. Respir. Med. 2007; 101: 1903–1908.

17. Santos M.S., Jung H., Peyrovi J. et al. Occupational asthma and work-exacerbated asthma: factors associated with time to diagnostic steps. Chest. 2007; 131: 1768–1775.

18. Barber C.M., Naylor S., Bradshaw L. et al. Facilities for investigating occupational asthma in UK non-specialist respiratory departments. Occup. Med. (Lond.). 2008; 58: 71–73.

19. Suojalehto H., Cullinan P. Specific inhalation challenge tests for occupational asthma in Europe: a survey. Eur. Respir. Rev. 2014; 23 (132): 266–270. DOI: 10.1183/09059180.00000414.

20. Balmes J., Becklake M., Blanc P. et al. American Thoracic Society Statement: occupational contribution to the burden of airway disease. Am. J. Respir. Crit. Care Med. 2003; 167: 787–797.

21. Toren K., Blanc P.D. Asthma caused by occupational exposures is common – a systematic analysis of estimates of the population-attributable fraction. BMC Pulm. Med. 2009; 9: 7.

22. Henneberger P.K., Redlich C.A., Callahan D.B. et al. An official American Thoracic Society statement: workexacerbated asthma. Am. J. Respir. Crit. Care Med. 2011; 184: 368–378.

23. Tarlo S.M., Leung K., Broder I. et al. Asthmatic subjects symptomatically worse at work: prevalence and characterization among a general asthma clinic population. Chest. 2000; 118: 1309–1314.

24. Vandenplas O., Toren K., Blanc P.D. Health and socioeconomic impact of work-related asthma. Eur. Respir. J. 2003; 22: 689–697.

25. Vandenplas O., Dressel H., Nowak D. et al. What is the optimal management option for occupational asthma? Eur. Respir. Rev. 2012; 21: 97–104.

26. Crapo R.O., Casaburi R., Coates A.L. et al. Guidelines for methacholine and exercise challenge testing – 1999. Am. J. Respir. Crit. Care Med. 2000; 161: 309–329.

27. Bateman E.D., Hurd S.S., Barnes P.J. et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 2008; 31: 143–178.

28. Simons F.E., Ardusso L.R., Bilo M.B. et al. 2012 Update: World Allergy Organization Guidelines for the assessment and management of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2012; 12: 389–399.

29. Cloutier Y., Malo J.L. Update on an exposure system for particles in the diagnosis of occupational asthma. Eur. Respir. J. 1992; 5: 887–890.

30. Vandenplas O., Malo J.L., Cartier A. et al. Closed-circuit methodology for inhalation challenge tests with isocyanates. Am. Rev. Respir. Dis. 1992; 145: 582–587.

31. Fabries J.F., Choudat D., Wrobel R. et al. Computerized equipment for the delivery of inhaled doses of solid particles in specific bronchial challenge. J. Aerosol. Med. 2000; 13: 1–10.

32. Caron S., Boileau J.C., Malo J.L. et al. New methodology for specific inhalation challenges with occupational agents. Respir. Res. 2010; 11: 72.

33. Melillo G., Bonini S., Cocco G. et al. EAACI provocation tests with allergens. Report prepared by the European Academy of Allergology and Clinical Immunology Subcommittee on provocation tests with allergens. Allergy. 1997; 52: 1–35.

34. Pepys J., Davies R.J., Breslin A.B. et al. The effects of inhaled beclomethasone dipropionate (Becotide) and sodium cromoglycate on asthmatic reactions to provocation tests. Clin. Allergy. 1974; 4: 13–24.

35. Martin GL, Atkins PC, Dunsky EH, et al. Effects of theophylline, terbutaline, and prednisone on antigen-induced bronchospasm and mediator release. J. Allergy Clin. Immunol.1980; 66: 204–212.

36. Burge P.S., Efthimiou J., Turner-Warwick M. et al. Double-blind trials of inhaled beclomethasone diproprionate and fluocortin butyl ester in allergen-induced immediate and late asthmatic reactions. Clin. Allergy. 1982; 12: 523–531.

37. Fabbri L.M., Chiesura-Corona P., Dal Vecchio L. et al. Prednisone inhibits late asthmatic reactions and the associated increase in airway responsiveness induced by toluene-diisocyanate in sensitized subjects. Am. Rev. Respir. Dis. 1985; 132: 1010–1014.

38. Boschetto P., Fabbri L.M., Zocca E. et al. Prednisone inhibits late asthmatic reactions and airway inflammation induced by toluene diisocyanate in sensitized subjects. J. Allergy Clin. Immunol. 1987; 80: 261–267.

39. Cockcroft D.W., Murdock K.Y. Comparative effects of inhaled salbutamol, sodium cromoglycate, and beclomethasone dipropionate on allergen-induced early asthmatic responses, late asthmatic responses, and increased bronchial responsiveness to histamine. J. Allergy Clin. Immunol.1987; 79: 734–740.

40. Mapp C., Boschetto P., dal Vecchio L. et al. Protective effect of antiasthma drugs on late asthmatic reactions and increased airway responsiveness induced by toluene diisocyanate in sensitized subjects. Am. Rev. Respir. Dis 1987; 136: 1403–1407.

41. De Marzo N., Fabbri L.M., Crescioli S. et al. Dose-dependent inhibitory effect of inhaled beclomethasone on late asthmatic reactions and increased responsiveness to methacholine induced by toluene diisocyanate in sensitized subjects. Pulm. Pharmacol. 1988; 1: 15–20.

42. Cockcroft D.W., McParland C.P., O’Byrne P.M. et al. Beclomethasone given after the early asthmatic response inhibits the late response and the increased methacholine responsiveness and cromolyn does not. J. Allergy Clin. Immunol. 1993; 91: 1163–1168.

43. Paggiaro P.L., Dente F.L., Morelli M.C. et al. Postallergen inhaled budesonide reduces late asthmatic response and inhibits the associated increase of airway responsiveness to methacholine in asthmatics. Am. J. Respir. Crit. Care Med. 1994; 149: 1447–1451.

44. Gauvreau G.M., Doctor J., Watson R.M. et al. Effects of inhaled budesonide on allergen-induced airway responses and airway inflammation. Am. J. Respir. Crit. Care Med. 1996; 154: 1267–1271.

45. Wood L.J., Sehmi R., Gauvreau G.M. et al. An inhaled corticosteroid, budesonide, reduces baseline but not allergeninduced increases in bone marrow inflammatory cell progenitors in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1999; 159: 1457–1463.

46. Kelly E.A., Busse W.W., Jarjour N.N. Inhaled budesonide decreases airway inflammatory response to allergen. Am. J. Respir. Crit. Care Med. 2000; 162: 883–890.

47. Inman M.D., Watson R.M., Rerecich T. et al. Dose-dependent effects of inhaled mometasone furoate on airway function and inflammation after allergen inhalation challenge. Am. J. Respir. Crit. Care Med. 2001; 164: 569–574.

48. Subbarao P., Dorman S.C., Rerecich T. et al. Protection by budesonide and fluticasone on allergen-induced airway responses after discontinuation of therapy. J. Allergy Clin. Immunol. 2005; 115: 745–750.

49. D’Alpaos V., Vandenplas O., Evrard G. et al. Inhalation challenges with occupational agents: threshold duration of exposure. Respir. Med. 2013; 107: 739–744.

50. Stenton S.C., Avery A.J., Walters E.H. et al. Statistical approaches to the identification of late asthmatic reactions. Eur. Respir. J. 1994; 7: 806–812.

51. Cockcroft D.W. Bronchial inhalation tests. II. Measurement of allergic (and occupational) bronchial responsiveness. Ann. Allergy. 1987; 59: 89–98.

52. Vandenplas O., Cartier A., Lesage J. et al. Occupational asthma caused by a prepolymer but not the monomer of toluene diisocyanate (TDI). J. Allergy Clin. Immunol.1992; 89: 1183–1188.

53. Vandenplas O., Cartier A., Lesage J. et al. Prepolymers of hexamethylene diisocyanate as a cause of occupational asthma. J. Allergy Clin. Immunol.1993; 91: 850–861.

54. Lemi#e`re C., Desjardins A., Cloutier Y. et al. Occupational asthma due to formaldehyde resin dust with and without reaction to formaldehyde gas. Eur. Respir. J. 1995; 8: 861–865.

55. Tatham A.S., Shewry P.R. Allergens to wheat and related cereals. Clin. Exp. Allergy. 2008; 38: 1712–1726.

56. van Kampen V., Merget R., Rabstein S. et al. Comparison of wheat and rye flour solutions for skin prick testing: a multi-centre study (Stad. 1). Clin. Exp. Allergy. 2009; 39: 1896–1902.

57. Vandenplas O., D’Alpaos V., Evrard G. et al. Incidence of severe asthmatic reactions after challenge exposure to occupational agents. Chest. 2013; 143: 1261–1268.

58. Perrin B., Cartier A., Ghezzo H. et al. Reassessment of the temporal patterns of bronchial obstruction after exposure to occupational sensitizing agents. J. Allergy Clin. Immunol.1991; 87: 630–639.

59. Vandenplas O., Cartier A., Ghezzo H. et al. Response to isocyanates: effect of concentration, duration of exposure, and dose. Am. Rev. Respir. Dis. 1993; 147: 1287–1290.

60. Nguyen B., Weytjens K., Cloutier Y. et al. Determinants of the bronchial response to high molecular weight occupational agents in a dry aerosol form. Eur. Respir. J. 1998; 12: 885–888.

61. Cockcroft D.W., Murdock K.Y., Kirby J. et al. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway responsiveness to histamine. Am. Rev. Respir. Dis. 1987; 135: 264–267.

62. Cockcroft D.W., Davis B.E., Boulet L.P. et al. The links between allergen skin test sensitivity, airway responsiveness and airway response to allergen. Allergy. 2005; 60: 56–59.

63. Barnig C., Purohit A., Casset A. et al. Nonallergic airway hyperresponsiveness and allergen-specific IgE levels are the main determinants of the early and late asthmatic response to allergen. J. Invest. Allergol. Clin. Immunol. 2013; 23: 267–274.

64. Quirce S., Fernandez-Nieto M., Escudero C. et al. Bronchial responsiveness to bakery-derived allergens is strongly dependent on specific skin sensitivity. Allergy. 2006; 61: 1202–1208.

65. Cockcroft D.W., Berscheid B.A. Measurement of responsiveness to inhaled histamine: comparison of FEV1 and SGaw. Ann. Allergy. 1983; 51: 374–377.

66. Vandenplas O., Caroyer J.M., Cangh F.B. et al. Occupational asthma caused by a natural food colorant derived from Monascus ruber. J. Allergy Clin. Immunol. 2000; 105: 1241–1242.

67. Vandenplas O., D’Alpaos V., Cesar M. et al. Occupational asthma caused by linseed oilcake. Allergy. 2008; 63: 1250–1251.

68. Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993; 6: Suppl. 16, 5–40.

69. Miller M.R., Hankinson J., Brusasco V. et al. Standardisation of spirometry. Eur. Respir. J. 2005; 26: 319–338.

70. Weytjens K., Malo J.L., Cartier A. et al. Comparison of peak expiratory flows and FEV1 in assessing immediate asthmatic reactions due to occupational agents. Allergy. 1999; 54: 621–625.

71. Moore V.C., Parsons N.R., Jaakkola M.S. et al. Serial lung function variability using four portable logging meters. J. Asthma. 2009; 46: 961–966.

72. Fish J.E., Kelly J.F. Measurements of responsiveness in bronchoprovocation testing. J. Allergy Clin. Immunol.1979; 64: 592–596.

73. Dehaut P., Rachiele A., Martin R.R. et al. Histamine dose-response curves in asthma: reproducibility and sensitivity of different indices to assess response. Thorax. 1983; 38: 516–522.

74. Frolund L., Madsen F., Svendsen U.G. et al. Reproducibility of responsiveness to a standardized bronchial allergen provocation-Rt compared to FEV1 as measurement of response to provocation. Clin. Allergy. 1987; 17: 217–228.

75. Oostveen E., MacLeod D., Lorino H. et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur. Respir. J. 2003; 22: 1026–1041.

76. Larbanois A., Delwiche J.P., Jamart J. et al. Comparison of FEV1 and specific airway conductance in assessing airway response to occupational agents. Allergy. 2003; 58: 1256–1260.

77. Malo J., Ghezzo H., L’Archeveque J. Distinct temporal patterns of immediate asthmatic reactions due to high- and low-molecular-weight agents. Clin. Exp. Allergy. 2012; 42: 1021–1027.

78. Malo J.L. «Daily pattern» of an asthmatic reaction due to isocyanates. Allergy. 2004; 59: 234–235.

79. Vandenplas O., Delwiche J.P., Jamart J. et al. Increase in non-specific bronchial hyperresponsiveness as an early marker of bronchial response to occupational agents during specific inhalation challenges. Thorax. 1996; 51: 472–478.

80. Sastre J., Fernandez-Nieto M., Novalbos A. et al. Need for monitoring nonspecific bronchial hyperresponsiveness before and after isocyanate inhalation challenge. Chest. 2003; 123: 1276–1279.

81. Vandenplas O., D’Alpaos V., Heymans J. et al. Sputum eosinophilia: an early marker of bronchial response to occupational agents. Allergy. 2009; 64: 754–761.

82. Leigh R., Hargreave F.E. Occupational neutrophilic asthma. Can. Respir. J. 1999; 6: 194–196.

83. Lemi#e`re C., Romeo P., Chaboillez S. et al. Airway inflammation and functional changes after exposure to different concentrations of isocyanates. J. Allergy Clin. Immunol. 2002; 110: 641–646.

84. Pala G., Pignatti P., Moscato G. Occupational exposure to toluene diisocyanate and neutrophilic bronchitis without asthma. Clin. Toxicol. (Phila). 2011; 49: 506–507.

85. Quirce S., Lemiere C., de Blay F. et al. Noninvasive methods for assessment of airway inflammation in occupational settings. Allergy. 2010; 65: 445–459.

86. Pala G., Pignatti P., Moscato G. The use of fractional exhaled nitric oxide in investigation of work-related cough in a hairdresser. Am. J. Ind. Med. 2011; 54: 565–568.

87. Obata H., Dittrick M., Chan H. et al. Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with western red cedar asthma. Eur. Respir. J. 1999; 13: 489–495.

88. Piipari R., Piirila P., Keskinen H. et al. Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur. Respir. J. 2002; 20: 1532–1537.

89. Baur X., Barbinova L. Latex allergen exposure increases exhaled nitric oxide in symptomatic healthcare workers. Eur. Respir. J. 2005; 25: 309–316.

90. Barbinova L., Baur X. Increase in exhaled nitric oxide (eNO) after work-related isocyanate exposure. Int. Arch. Occup. Environ. Hlth. 2006: 1–9.

91. Swierczynska-Machura D., Krakowiak A., Wiszniewska M. et al. Exhaled nitric oxide levels after specific inahalatory challenge test in subjects with diagnosed occupational asthma. Int. J. Occup. Med. Environ. Hlth. 2008; 21: 219–225.

92. Ferrazzoni S., Scarpa M.C., Guarnieri G. et al. Exhaled nitric oxide and breath condensate pH in asthmatic reactions induced by isocyanates. Chest. 2009; 136: 155–162.

93. Pedrosa M., Barranco P., Lopez-Carrasco V. et al. Changes in exhaled nitric oxide levels after bronchial allergen challenge. Lung. 2012; 190: 209–214.

94. Sastre J., Costa C., del Garc#ı´a Potro M, et al. Changes in exhaled nitric oxide after inhalation challenge with occupational agents. J. Invest. Allergol. Clin. Immunol. 2013; 23: 421–427.

95. Walters G.I., Moore V., Mc Grath E.E., Burge S. Fractional exhaled nitric oxide in the interpretation of specific inhalational challenge tests for occupational asthma. Lung. 2014; 192 (1): 119–124. DOI: 10.1007/s00408

96. Lemiere C., D’Alpaos V., Chaboillez S. et al. Investigation of occupational asthma: sputum cell counts or exhaled nitric oxide? Chest. 2010; 137: 617–622.

97. Hendrick D.J., Marshall R., Faux J.A. et al. Positive ‘‘alveolar’’ responses to antigen inhalation provocation tests: their validity and recognition. Thorax. 1980; 35: 415–427.

98. Ramirez-Venegas A., Sansores R.H., Perez-Padilla R. et al. Utility of a provocation test for diagnosis of chronic pigeon breeder’s disease. Am. J. Respir. Crit. Care Med. 1998; 158: 862–869.

99. Morell F., Roger A., Reyes L. et al. Bird fancier’s lung: a series of 86 patients. Medicine. 2008; 87: 110–130.

100. Castano R., Theriault G., Gautrin D. et al. Reproducibility of acoustic rhinometry in the investigation of occupational rhinitis. Am. J. Rhinol. 2007; 21: 474–477.

101. Moscato G., Vandenplas O., Gerth Van Wijk R. et al. Occupational rhinitis. Allergy. 2008; 63: 969–980.

102. Pignatti P., Pala G., Pisati M. et al. Nasal blown secretion evaluation in specific occupational nasal challenges. Int. Arch. Occup. Environ. Hlth. 2009; 83: 217–223.

103. Moscato G., Pala G., Perfetti L. et al. Clinical and inflammatory features of occupational asthma caused by persulphate salts in comparison with asthma associated with occupational rhinitis. Allergy. 2010; 65: 784–790.

104. Moore V.C., Jaakkola M.S., Burge C.B. et al. A new diagnostic score for occupational asthma: the area between the curves (ABC score) of peak expiratory flow on days at and away from work. Chest. 2009; 135: 307–314.

105. Burge C.B., Moore V.C., Pantin C.F. et al. Diagnosis of occupational asthma from time point differences in serial PEF measurements. Thorax. 2009; 64: 1032–1036.

106. Anees W., Blainey D., Moore V.C. et al. Differentiating occupational asthmatics from non-occupational asthmatics and irritant-exposed workers. Occup. Med. (Lond.). 2011; 61: 190–195.

107. Baur X., Huber H., Degens P.O. et al. Relation between occupational asthma case history, bronchial methacholine challenge, and specific challenge test in patients with suspected occupational asthma. Am. J. Ind. Med. 1998; 33: 114–122.

108. Dweik R.A., Boggs P.B., Erzurum S.C. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011; 184: 602–615.

109. Barranco P., Fernandez-Nieto M., del Pozo V. et al. Nonasthmatic eosinophilic bronchitis in a baker caused by fungal alpha-amylase and wheat flour. J. Invest. Allergol. Clin. Immunol. 2008; 18: 494–495.

110. Di Stefano F, Di Giampaolo L, Verna N, et al. Occupational eosinophilic bronchitis in a foundry worker exposed to isocyanate and a baker exposed to flour. Thorax. 2007; 62: 368–370.

111. Yacoub M.R., Malo J.L., Labrecque M. et al. Occupational eosinophilic bronchitis. Allergy. 2005; 60: 1542–1544.

112. Krakowiak A.M., Dudek W., Ruta U. et al. Occupational eosinophilic bronchitis without asthma due to chloramine exposure. Occup. Med. (Lond.). 2005; 55: 396–368.

113. Quirce S. Eosinophilic bronchitis in the workplace. Curr. Opin. Allergy Clin. Immunol. 2004; 4: 87–91.

114. Quirce S., Fernandez-Nieto M., de Miguel J. et al. Chronic cough due to latex-induced eosinophilic bronchitis. J. Allergy Clin. Immunol. 2001; 108: 143.

115. Ogawa H., Fujimura M., Heki U. et al. Eosinophilic bronchitis presenting with only severe dry cough due to bucillamine. Respir. Med. 1995; 89: 219–221.

116. Malo J.L., Ghezzo H., L’Archev#eˆque J. et al. Late asthmatic reactions to occupational sensitizing agents: frequency of changes in nonspecific bronchial responsiveness and of response to inhaled b2-adrenergic agent. J. Allergy Clin. Immunol. 1990; 85: 834–842.

117. Dufour M.H., Lemiere C., Prince P. et al. Comparative airway response to high- versus low-molecular weight agents in occupational asthma. Eur. Respir. J. 2009; 33: 734–739.

118. Mapp C.E., Corona P.C., De Marzo N. et al. Persistent asthma due to isocyanates. A follow-up study of subjects with occupational asthma due to toluene diisocyanate (TDI). Am. Rev. Respir. Dis. 1988; 137: 1326–1329.

119. Paggiaro P.L., Vagaggini B., Dente F.L. et al. Bronchial hyperresponsiveness and toluene diisocyanate. Long-term change in sensitized asthmatic subjects. Chest. 1993; 103: 1123–1128.

120. Pisati G., Baruffini A., Bernabeo F. et al. Rechallenging subjects with occupational asthma due to toluene diisocyanate (TDI), after long-term removal from exposure. Int. Arch. Occup. Environ. Hlth. 2007; 80: 298–305.

121. Merget R., Reineke M., Rueckmann A. et al. Nonspecific and specific bronchial responsiveness in occupational asthma caused by platinum salts after allergen avoidance. Am. J. Respir. Crit. Care Med. 1994; 150: 1146–1149.

122. Lemi#e`re C., Cartier A., Dolovich J. et al. Outcome of specific bronchial responsiveness to occupational agents after removal from exposure. Am. J. Respir. Crit. Care Med. 1996; 154: 329–333.

123. Lemi#e`re C., Cartier A., Malo J.L. et al. Persistent specific bronchial reactivity to occupational agents in workers with normal nonspecific bronchial reactivity. Am. J. Respir. Crit. Care Med. 2000; 162: 976–980.

124. Bernstein I.L., Chan-Yeung M., Malo J.L. et al. Definition and classification of asthma in the workplace. In: Bernstein I.L., Chan-Yeung M., Malo J.L. et al., eds. Asthma in the Workplace. New York: Marcel Dekker Inc.; 2006: 1–8.

125. Harving H., Korsgaard J., Dahl R. et al. Low concentrations of formaldehyde in bronchial asthma: a study of exposure under controlled conditions. Br. Med. J. 1986; 293: 310.

126. Green D.J., Sauder L.R., Kulle T.J. et al. Acute response to 3.0 ppm formaldehyde in exercising healthy nonsmokers and asthmatics. Am. Rev. Respir. Dis. 1987; 135: 1261–1266.

127. De Luca S., Caire N., Cloutier Y. et al. Acute exposure to sawdust does not alter airway calibre and responsiveness to histamine in asthmatic subjects. Eur. Respir. J. 1988; 1: 540–546.

128. Harving H., Dahl R., Molhave L. Lung function and bronchial reactivity in asthmatics during exposure to volatile organic compounds. Am. Rev. Respir. Dis. 1991; 143: 751–754.

129. Beach J.R., Raven J., Ingram C. et al. The effects on asthmatics of exposure to a conventional water-based and a volatile organic compound-free paint. Eur. Respir. J. 1997; 10: 563–566.

130. Vandenplas O., Delwiche J.P., Staquet P. et al. Pulmonary effects of short-term exposure to low levels of toluene diisocyanate in asymptomatic subjects. Eur. Respir. J. 1999; 13: 1144–1150.

131. Trenga C.A., Koenig J.Q., Williams P.V. Sulphur dioxide sensitivity and plasma antioxidants in adult subjects with asthma. Occup. Environ. Med. 1999; 56: 544–547.

132. D’Alessandro A., Kuschner W., Wong H. et al. Exaggerated responses to chlorine inhalation among persons with nonspecific airway hyperreactivity. Chest. 1996; 109: 331–337.

133. Sastre J., Madero M.F., Fernandez-Nieto M. et al. Airway response to chlorine inhalation (bleach) among cleaning workers with and without bronchial hyperresponsiveness. Am. J. Ind. Med. 2011; 54: 293–299.

134. Cockcroft D.W., Hoeppner V.H., Werner G.D. Recurrent nocturnal asthma after bronchoprovocation with Western Red Cedar sawdust: association with acute increase in non-allergic bronchial responsiveness. Clin. Allergy. 1984; 14: 61–68.

135. Lemiere C., Gautrin D., Trudeau C. et al. Fever and leukocytosis accompanying asthmatic reactions due to occupational agents: frequency and associated factors. Eur. Respir. J. 1996; 9: 517–523.

136. Kaplan I., Zeligman I. Urticaria and asthma from acetylene welding. Arch. Dermatol. 1963; 88: 188–189.

137. Moller D.R., Brooks S.M., Bernstein D.I. et al. Delayed anaphylactoid reaction in a worker exposed to chromium. J. Allergy Clin. Immunol.1986; 77: 451–456.

138. Romano C., Sulotto F., Pavan I. et al. A new case of occupational asthma from reactive dyes with severe anaphylactic response to the specific challenge. Am. J. Ind. Med. 1992; 21: 209–216.

139. Hannu T., Alanko K., Keskinen H. Anaphylaxis and allergic contact urticaria from occupational airborne exposure to HBTU. Occup. Med. (Lond.). 2006; 56: 430–433.

140. Krecisz B., Kiec-Swierczynska M., Krawczyk P. et al. Cobalt-induced anaphylaxis, contact urticaria, and delayed allergy in a ceramics decorator. Contact. Dermatitis. 2009; 60: 173–174.

141. Kennedy W.A., Girard F., Chaboillez S. et al. Cost-effectiveness of various diagnostic approaches for occupational asthma. Can. Respir. J. 2007; 14: 276–280.


Рецензия

Для цитирования:


Ингаляционные провокационные тесты для диагностики профессиональной бронхиальной астмы: рекомендации Европейского респираторного общества. Пульмонология. 2015;25(1):19-31. https://doi.org/10.18093/0869-0189-2015-25-1-19-31

For citation:


Challenge inhalation tests in the diagnosis of occupational asthma: the guidelines of European Respiratory Society. PULMONOLOGIYA. 2015;25(1):19-31. (In Russ.) https://doi.org/10.18093/0869-0189-2015-25-1-19-31

Просмотров: 3185


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)