Preview

PULMONOLOGIYA

Advanced search

Bronchial asthma and obesity: search for therapeutic models

https://doi.org/10.18093/0869-0189-2014-0-6-94-102

Abstract

A phenotype-based approach to treatment of bronchial asthma draws the growing attention of experts worldwide. One of asthma phеnotypes is comorbidity of asthma and overweight (including obesity). Some features of this phenotype have recently been described in molecular studies. An intensive search of relationships between phenotype, genotype and pathogenic mechanisms of the disease is suggested to be useful for development of effective therapeutic algorithm with the highest predictive value in this cohort of patiens. 

About the Authors

D. S. Fomina
State Institution of Аdditional Еducation "Russian Medical Postgraduate Academy", Healthcare Ministry of Russia: 2 / 1, Barrikadnaya ul., Moscow, 123995, Russia State Institution "City Clinical Hospital N 52", Moscow Healthcare Department: 3, Pekhotnaya ul., Moscow, 123182, Russia
Russian Federation

PhD, Associate Professor, Chair of Clinical Allergology, State Budget Educational Institution of Аdditional Еducation "Russian Medical Postgraduate Academy", Healthcare Ministry of Russia; Head of Department of Allergology, State Budget Healthcare Institution "City Clinical Hospital N 52", Moscow Healthcare Department; tel.: (499) 196-19-54



L. A. Goryachkina
State Institution of Аdditional Еducation "Russian Medical Postgraduate Academy", Healthcare Ministry of Russia: 2 / 1, Barrikadnaya ul., Moscow, 123995, Russia
Russian Federation

MD, Professor, Head of Chair of Clinical Allergology, State Budget Educational Institution of Аdditional Еducation "Russian Medical Postgraduate Academy", Healthcare Ministry of Russia; tel.: (499) 196-19-54



Yu. G. Alekseeva
State Institution "City Clinical Hospital N 52", Moscow Healthcare Department: 3, Pekhotnaya ul., Moscow, 123182, Russia
Russian Federation

allergist, immunologist, State Budget Healthcare Institution "City Clinical Hospital N 52", Moscow Healthcare Department; tel.: (499) 196-29-88



E. N. Bobrikova
State Institution "City Outpatient Hospital N 62, Branch N 2", Moscow Healthcare Department: 12, Yunnatov ul., Moscow, 125083, Russia
Russian Federation

allergist, immunologist, State Budget Healthcare Institution "City Outpatient Hospital N 62, Branch N 2", Moscow Healthcare Department; Chief Allergist of the Northern Administrative District of Moscow; tel.: (962) 962-00-96



References

1. Global Initiative for Asthma (GINA) Guidelines 2014. http://www.ginasthma.org

2. Luskin A.T. What the asthma end points we know and love do and do not tell us. J. Allergy Clin. Immunol. 2005; 115: S539–S545.

3. Busse W.W., Lemanske R.F. Jr. Asthma. N. Engl. J. Med. 2001; 344: 350–362.

4. Claessen H., Brenner H., Drath C., Arndt V. Repeated measures of body mass index and risk of health related outcomes. Eur. J. Epidemiol. 2012; 27 (3): 215–224.

5. Dixon A.E. An Official American Thoracic Society Workshop Report: Obesity and asthma. Proc. Am. Thorac. Soc. 2010; 7: 325–335.

6. Burgess J.A., Walters E.H., Byrnes G.B. et al. Childhood adiposity predicts adult-onset current asthma in females: a 25-yr prospective study. Eur. Respir. J. 2007; 29: 668–675.

7. Taylor B., Mannino D., Brownet C. et al. Body mass index and asthma severity in the National Asthma Survey. Thorax. 2008; 63 (1): 14–20.

8. Aaron S.D., Fergusson D., Dent R. et al. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004; 125: 2046–2052.

9. Moreira A., Bonini M., Garcia-Larsen V. et al. Weight loss interventions in asthma: EAACI Evidence-Based Clinical Practice Guideline (Part I). Allergy. 2013; 68: 425–439.

10. Gray D.S., Fujioka K. Use of relative weight and Body Mass Index for the determination of adiposity. J. Clin. Epidemiol. 1991; 44 (6): 545–550.

11. Flegal K.M., Ogden C.L., Wei R. et al. Prevalence of overweight in US children: comparison of US growth charts from the Centers for Disease Control and Prevention with other reference values for body mass index. Am. J. Clin. Nutr. 2001; 73 (6): 1086–1093. PMID 11382664.

12. Shore S.A. Obesity and asthma: possible mechanisms. J. Allergy Clin. Immunol. 2008; 121: 1087–1093. Quiz 94–95.

13. Hallstrand T.S., Fischer M.E., Wurfel M.M. et al. Genetic pleiotropy between asthma and obesity in a communitybased sample of twins. J. Allergy Clin. Immunol. 2005; 116: 1235–1241.

14. Beuther D.A., Weiss S.T., Sutherland E.R. Obesity and asthma. Am. J. Respir. Crit. Care Med. 2006; 174: 112–119.

15. Canoz M., Erdenen F., Uzun H. et al., The relationship of inflammatory cytokines with asthma and obesity. Clin. Invest. Med. 2008; 31 (6): E373–E379.

16. Sierra-Honigmann M.R., Nath A.K., Murakami C. et al. Biological action of leptin as an angiogenic factor. Science. 1998; 281 (5383): 1683–1686.

17. Sood A., Ford E.S., Camargo C.A. Jr. Association between leptin and asthma in adults. Thorax. 2006; 61 (4): 300–305.

18. Strissel K.J., Stancheva Z., Miyoshi H. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007; 56: 2910–2918.

19. Alkhouri N., Gornicka A., Berk M.P. et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem. 2010; 285: 3428–3438.

20. Abreu Velez A.M., Dejoseph L.M., Howard M.S. HAM56 and CD68 antigen presenting cells surrounding a sarcoidal granulomatous tattoo. N. Am. J. Med. Sci. 2011; 3: 475–477.

21. Sethi J.K., Vidal-Puig A.J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid. Res. 2007; 48: 1253–1262.

22. Osborn O., Olefsky J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012; 18: 363–374.

23. Mantovani A., Sozzani S., Locati M. et al. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002; 23: 549–555.

24. Sica A., Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012; 122: 787–795.

25. Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003; 73: 209–212.

26. Shore S.A., Lang J.E., Kasahara D.I. et al. Pulmonary responses to subacute ozone exposure in obese vs. lean mice. J. Appl. Physiol. 2009; 107 (5): 1445–1452.

27. Shore S.A. Obesity, airway hyperresponsiveness, and inflammation. J. Appl. Physiol. 2010; 108 (3): 735–743.

28. Fjeldborg K., Christiansen T., Bennetzen M. et al. The macrophage specific serum marker, soluble CD163, is increased in obesity and reduced after dietary induced weight loss. Obesity (Silver Spring). 2013; 21 (12): 2437–2443. DOI:10.1002/oby.20376.

29. Al-Daghri N.M., Al-Attas O.S., Bindahman L.S. et al. Soluble CD163 is associated with bodymass index and blood pressure in hypertensive obese Saudi patients. Eur. J. Clin. Invest. 2012, 42, 1221–1226.

30. Kristiansen M., Graversen J.H., Jacobsen C. et al. Identification of the haemoglobin scavenger receptor. Nature. 2001; 409: 198–201.

31. Theoharides T.C., Cochrane D.E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 2004; 146: 1–12.

32. Chida Y., Hamer M., Steptoe A. A bidirectional relationship between psychosociall factors and atopic disorders: a systematic review and meta-analysis. Psychosom. Med. 2008; 70: 102–116.

33. Theoharides T.C., Enakuua S., Sismanopoulos N. et al. Stress contributes to asthma worsening through mast cell activation. Ann. Allergy Asthma Immunol. 2012; 109: 14–19.

34. Girodet P.O., Ozier A., Trian T. et al. Mast cell adhesion to bronchial smooth muscle in asthma specifically depends on CD51 and CD44 variant 6. Allergy. 2010; 65: 1004–1012.

35. Oh S.H., Park C.O., Wu W.H. et al. Corticotropin-releasing hormone downregulates IL-10 production by adaptive forkhead box protein 3-negative regulatory T-cells in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2012; 129: 151–159.

36. Dut R., Dizdar E.A., Birben E. et al. Oxidative stress and its determinants in the airways of children with asthma. Allergy. 2008; 63 (12): 1605–1609.

37. Sackesen C., Ercan H., Dizdar E. et al. A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J. Allergy Clin. Immunol. 2008; 122 (1): 78–85.

38. Ercan H., Birben E., Dizdar E.A. et al. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J. Allergy Clin. Immunol. 2006; 118 (5): 1097–1104.

39. Lugogo N.L., Bappanad D., Kraft M. Obesity, metabolic dysregulation and oxidative stress in asthma. Biochim. Biophys. Acta. 2011; 1810 (11): 1120–1126.

40. Peters-Golden M., Swern A., Bird S.S. et al. Influence of body mass index on the response to asthma controller agents. Eur. Respir. J. 2006; 27: 495–503.

41. Beuther D.A., Sutherland E.R. Overweight, obesity, and incident asthma: a metaanalysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007; 175: 661–666.

42. Castro-Rodriguez J.A., Holberg C.J., Morgan W.J. et al. Increased incidence of asthmalike symptoms in girls who become overweight or obese during the school years. Am. J. Respir. Crit. Care Med. 2001; 163: 1344–1349.

43. Gold D.R., Damokosh A.I., Dockery D.W., Berkey C.S. Body-mass index as a predictor of incident asthma in a prospective cohort of children. Pediatr. Pulm. 2003; 36: 514–521.

44. Oddy W.H., Sherriff J.L., de Klerk N.H. et al. The relation of breastfeeding and body mass index to asthma and atopy in children: a prospective cohort study to age 6 years. Am. J. Public. Hlth. 2004; 94: 1531–1537.

45. Mamun A.A., Lawlor D.A., Alati R. et al. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study. Int. J. Obes. 2007; 31: 578–583.

46. Kotani K., Tokunaga K., Fujioka S. et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. 1994; 18: 207–212.

47. Van Harmelen V., Reynisdottir S., Eriksson P. et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998; 47: 913–917.

48. Troisi R.J., Speizer F.E., Willett W.C. et al. Menopause, postmenopausal estrogen preparations, and the risk of adult-onset asthma. A prospective cohort study. Am. J. Respir. Crit. Care Med. 1995; 152: 1183–1188.

49. Jensen M.E., Collins C.E. The obesity phenotype in children with asthma. Pediatr. Respir. Rev. 2011; 12 (3): 152–159.

50. Camargo C.A. Jr, Boulet L.P., Sutherland E.R. et al. Body mass index and response to asthma therapy: Fluticasone propionate / salmeterol versus montelukast. J. Asthma. 2010; 47: 76–82.

51. Sutherland E.R., Lehman E.B., Teodorescu M., Wechsler M.E. Body mass index and phenotype in subjects with mild-to-moderate persistent asthma. J. Allergy Clin. Immunol. 2009; 123: 1328–1334.

52. Peters-Golden M., Swern A., Bird S.S. et al. Influence of body mass index on the response to asthma controller agents. Eur. Respir. J. 2006; 27: 495–503.

53. Boulet L.P., Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir. Med. 2007; 101: 2240–2247.

54. Kazaks A., Uriu-Adams J.Y., Stern J.S., Albertson T.E. No significant relationship between exhaled nitric oxide and body mass index in people with asthma. J. Allergy Clin. Immunol. 2005; 116: 929–930.

55. Leung T.F., Li C.Y., Lam C.W. et al. The relation between obesity and asthmatic airway inflammation. Pediatr. Allergy Immunol. 2004; 15: 344–350.

56. Telenga E.D., Tideman S.W. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012; 67: 1060–1068.

57. Haldar P., Pavord I.D., Shaw D.E. et al. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008; 178: 218–224.

58. Scott H.A., Gibson P.G., Garg M.L., Wood L.G. Airway inflammation is augmented byobesity and fatty acids in asthma. Eur. Respir. J. 2011; 38: 594–602.

59. Stream A.R., Sutherland E.R. Obesity and asthma disease phenotypes. Curr. Opin. Allergy Clin. Immunol. 2012; 12: 76–81.

60. Horrillo R., González-Périz A., Martínez-Clemente M. et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 2010; 184 (7): 3978–3987.

61. Chakrabarti S.K., Wen Y., Dobrian A.D. et al. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats. Am. J. Physiol. Endocrinol. Metab. 2011; 300 (1): E175–E187.

62. Sutherland E.R., Goleva E., Jackson L.P. et al. Vitamin D levels, lung function, and steroid response in adult asthma. Am. J. Respir. Crit. Care Med. 2010; 181 (7): 699–704.

63. Middleton E. Jr, Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol. Rev. 2000; 52: 673–751.

64. Kimata M., Schchijo M., Miura T. et al. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy. 1999; 30: 501–508.

65. Kempuraj D., Madhappan B., Christodoulou S. et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 2005; 145: 934–944.

66. Deqiu Z., Kang L., Jiali Y. et al. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochimie. 2011; 93: 506–512.


Review

For citations:


Fomina D.S., Goryachkina L.A., Alekseeva Yu.G., Bobrikova E.N. Bronchial asthma and obesity: search for therapeutic models. PULMONOLOGIYA. 2014;(6):94-102. (In Russ.) https://doi.org/10.18093/0869-0189-2014-0-6-94-102

Views: 1540


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)