The new triple CFTR modulator vanzacaftor/tezacaftor/ deutivacaftor (Aliftrek®) and its place in the treatment of cystic fibrosis
https://doi.org/10.18093/0869-0189-2025-35-6-875-882
Abstract
Cystic fibrosis (CF) is a progressive, life-limiting, autosomal recessive monogenic disease caused by mutations in the CFTR gene, leading to dysfunction of chloride channels in epithelial cells of almost all human exocrine systems, disrupting the function of sweat and salivary glands, the exocrine part of the pancreas, the hepatobiliary and reproductive systems, the intestines, and the respiratory tract. The development of CFTR modulators has revolutionized the treatment of CF by correcting CFTR protein dysfunction at the cellular level.
The aim. In our review, we tried to answer the question of whether the new three-component modulator vanzacaftor/tezacaftor/deutivacaftor (VTD) represents a significant step forward in the treatment of people with CF and whether all susceptible patients should switch from elexacaftor/tezaftor/ivacaftor (ETI) to VTD.
Methods. We analyzed all available scientific literature on the comparative efficacy of VTD and ETI. The search was conducted in the PubMed, Scopus, and Web of Science databases.
Results. It has been found that to date (October 2025) there is no proven clinical superiority of VTD over ETI. The drugs are comparable in terms of improving lung function, the number of exacerbations of the bronchopulmonary process, and the number of adverse reactions. Based on sweat test results, VTD demonstrates an advantage in restoring CFTR protein function, indicating the potential for early restoration of normal chloride channel function and prevention of the development or progression of cystic fibrosis, which still needs to be confirmed in real-world clinical practice. The once-daily dosing regimen of VTD could be considered a desirable feature of the drug, but its high cost does not provide ethical arguments in favor of a mass switch from ETI to VTD for the public health benefit. VTD can be prescribed to patients aged 6 years and older who have at least one of 31 additional pathogenic variants not listed in the prescribing information for ETI.
Conclusion. The advisability of discontinuing successful pathogenetic treatment with ETI and prescribing VTD requires further study in real clinical practice.
About the Authors
N. Yu. KashirskayaRussian Federation
Nataliya Yu. Kashirskaya, Doctor of Medicine, Professor, Chief Researcher, Laboratory of Genetic Epidemiology; Professor, Department of Pediatrics
ul. Moskvorechye 1, Moscow, 115522, tel.: (499) 324-12-24
ul. Shchepkina 61/2, Moscow, 129110
Competing Interests:
Kashirskaya N.Yu. – receives fees for presentations from Sanofi, Gen Ilac, Generium, MIK company. Zinchenko R.A. – receives fees for presentations Sanofi. Amelina E.L. confirmed the absence of a reportable conflict of interests.
E. L. Amelina
Russian Federation
Elena L. Amelina, Candidate of Medicine, Head of the Cystic Fibrosis Laboratory
Orekhovyy bul’var 28, Moscow, 115682, tel.: (926) 205-03-91
Competing Interests:
Kashirskaya N.Yu. – receives fees for presentations from Sanofi, Gen Ilac, Generium, MIK company. Zinchenko R.A. – receives fees for presentations Sanofi. Amelina E.L. confirmed the absence of a reportable conflict of interests.
R. A. Zinchenko
Russian Federation
Rena A. Zinchenko, Doctor of Medicine, Professor, Corresponding Member of the Russian Academy of Sciences, Professor, Honored Worker of Science of the Russian Federation, Deputy Director on Scientific and Clinical work; Head of the laboratory of genetic epidemiology
ul. Moskvorechye 1, Moscow, 115522, tel.: (499) 324-12-24
Competing Interests:
Kashirskaya N.Yu. – receives fees for presentations from Sanofi, Gen Ilac, Generium, MIK company. Zinchenko R.A. – receives fees for presentations Sanofi. Amelina E.L. confirmed the absence of a reportable conflict of interests.
References
1. Guo J., Garratt A., Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 2022; 21 (3): 456–462. DOI: 10.1016/j.jcf.2022.01.009.
2. Bell S.C., Mall M.A., Gutierrez H. et al. The future of cystic fibrosis care: a global perspective. Lancet Respir. Med. 2020; 8 (1): 65–124. DOI: 10.1016/S2213-2600(19)30337-6.
3. Kapranov N. I., Kashirskaya N. Yu. [Cystic fibrosis]. In: Blokhin B.M., ed. [Pediatric pulmonology: national guidelines]. Moscow: GEOTAR-Media; 2021; Ch. 6: 159–183. DOI: 10.33029/9704-5857-0-2021-DEP-1-960 (in Russian).
4. Grasemann H., Ratjen F. Cystic fibrosis. N. Engl. J. Med. 2023; 389 (18): 1693–1707. DOI: 10.1056/NEJMra2216474.
5. Bardin E., Pastor A., Semeraro M. et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021; 213: 113195. DOI: 10.1016/j.ejmech.2021.113195.
6. Southern K.W. What does the expanding CFTR modulator programme mean for people with cystic fibrosis? Lancet Respir. Med. 2025; 13 (3): 195–197. DOI: 10.1016/S2213-2600(24)00427-2.
7. Uyangoda K., Dawson C., Gudka N., Brugha R. Impacts and new challenges with highly effective modulator therapies in younger children with cystic fibrosis. J. Clin. Med. 2025; 14 (13): 4625. DOI: 10.3390/jcm14134625.
8. Davies J.C.; Wainwright C.E.; Canny G.J. et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am. J. Respir. Crit. Care Med. 2013; 187 (11): 1219–1225. DOI: 10.1164/rccm.201301-0153OC.
9. Flume P.A., Liou T.G., Borowitz D.S. et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012; 142 (3): 718–724. DOI: 10.1378/chest.11-2672.
10. Davies J.C., Cunningham S., Harris W.T. et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir. Med. 2016; 4 (2): 107–115. DOI: 10.1016/S2213-2600(15)00545-7.
11. Wainwright C.E., Elborn J.S., Ramsey B.W. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 2015; 373 (18): 1783–1784. DOI: 10.1056/NEJMc1510466.
12. Boyle M.P., Bell S.C., Konstan M.W. et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir. Med. 2014; 2 (7): 527–538. DOI: 10.1016/S2213-2600(14)70132-8.
13. Flume P.A., Biner R.F., Downey D.G. et al. Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): an open-label extension study. Lancet Respir. Med. 2021; 9 (7): 733–746. DOI: 10.1016/S2213-2600(20)30510-5.
14. Barry P.J., Mall M.A., Álvarez A. et al. Triple therapy for cystic fibrosis Phe508del-gating and – residual function genotypes. N. Engl. J. Med. 2021; 385 (9): 815–825. DOI: 10.1056/NEJMoa2100665.
15. Cromwell E.A., Ostrenga J.S., Sanders D.B. et al. Impact of the expanded label for elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis with no F508del variant in the USA. Eur. Respir. J. 2024; 64 (5): 2401146. DOI: 10.1183/13993003.01146-2024.
16. Hoppe J.E., Kasi A.S., Pittman J.E. et al. Vanzacaftor–tezacaftor–deutivacaftor for children aged 6–11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): an analysis from a single-arm, phase 3 trial. Lancet Respir. Med. 2025; 13 (3): 244–255. DOI: 10.1016/S2213-2600(24)00407-7.
17. Keating C., Yonker L.M., Vermeulen F. et al. Vanzacaftor–tezacaftor deutivacaftor versus elexacaftor– tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials. Lancet Respir. Med. 2025; 13 (3): 256–271. DOI: 10.1016/2213-2600(24)00411-9.
18. Langeveld G., Bea C. EPS7.01 Comparing elexacaftor and vanzacaftor: impact on CFTR functional rescue and protein maturation. J. Cyst. Fibros. 2025; 24 (Suppl. 1): S60. DOI: 10.1016/j.jcf.2025.03.648.
19. Tümmler B. The multiple tales on sweat chloride in cystic fibrosis. J. Cyst. Fibros. 2025; 24 (2): 212–214. DOI: 1.1016/j.jcf.2025.02.014.
20. Zemanick E.T., Emerman I., McCreary M. et al. Heterogeneity of CFTR modulator-induced sweat chloride concentrations in people with cystic fibrosis. J. Cyst. Fibros. 2024; 23 (4): 676–684. DOI: 10.1016/j.jcf.2024.02.001.
21. Mishra A., Greaves R., Massie J. The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era. Clin. Biochem. Rev. 2005; 26 (4): 135–153. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC1320177/
22. Burgel P.R., Sermet-Gaudelus I., Girodon E. et al. Gathering real-world compassionate data to expand eligibility to elexacaftor–tezacaftor–ivacaftor in people with cystic fibrosis with N1303K or other rare CFTR variants: a viewpoint. Eur. Respir. J. 2024: 63 (1): 2301959. DOI: 10.1183/13993003.01959-2023.
23. Burgel P., Da Silva J, Martin C. et al. WS15.03 Elevated sweat chloride concentrations in people with cystic fibrosis with at least one N1303K, 2789+5G>A or R334W treated with elexacaftor/tezacaftor/ivacaftor. J. Cyst. Fibros. 2025; 24 (Suppl. 1): S30. DOI: 10.1016/j.jcf.2025.03.578.
24. Pallenberg S.T., Pust M.M., Rosenboom I. et al. Impact of elexacaftor/tezacaftor/ivacaftor therapy on the cystic fibrosis airway microbial metagenome. Microbiol. Spectr. 2022; 10 (5): e0145422. DOI: 10.1128/spectrum.01454-22.
25. Marsh R., Santos C.D., Yule A. et al. Impact of extended elexacaftor/tezacaftor/ivacaftor therapy on the gut microbiome in cystic fibrosis. J. Cyst. Fibros. 2024; 23 (5): 967–976. DOI: 10.1016/j.jcf.2024.05.002.
26. Dohna M., Voskrebenzev A., Klimeš F. et al. PREFUL MRI for monitoring perfusion and ventilation changes after elexacaftor–tezacaftor–ivacaftor therapy for cystic fibrosis: a feasibility study. Radiol. Cardiothorac. Imaging. 2024; 6 (2): e230104. DOI: 10.1148/ryct.230104.
27. Pallenberg S.T., Junge S., Ringshausen F.C. et al. CFTR modulation with elexacaftor–tezacaftor–ivacaftor in people with cystic fibrosis assessed by the β-adrenergic sweat rate assay. J. Cyst. Fibros. 2022; 21 (3): 442–447. DOI: 10.1016/j.jcf.2021.10.005.
28. Zemanick E.T., Taylor-Cousar J.L., Davies J. et al. A phase 3 open-label study of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis and at least one F508del allele. Am. J. Respir. Crit. Care Med. 2021; 203 (12): 1522–1532. DOI: 10.1164/rccm.202102-0509OC.
29. Mall M.A., Brugha R., Gartner S. et al. Efficacy and safety of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function mutation: a phase 3b, randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2022; 206 (11): 1361–1369. DOI: 10.1164/rccm.202202-0392OC.
30. Alyftrek (vanzacaftor, tezacaftor, and deutivacaftor tablets). Highlights of prescribing information. 2024. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218730s000lbl.pdf [Accessed: November 22, 2025].
31. Trikafta (elexacaftor, tezacaftor, and ivacaftor tablets; ivacaftor tablets). Highlights of prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212273s013lbl.pdf [Accessed: November 22, 2025].
32. Kondratyeva E.I., Avdeev S.N., Kutsev S.I. [New possibilities for targeted therapy of cystic fibrosis]. Pul’monologiya. 2025; 35 (2): 167–176. DOI: 10.18093/0869-0189-2025-35-2-167-176 (in Russian).
33. Mehta Z., Kamal K.M., Miller R. et al. Adherence to cystic fibrosis transmembrane conductance regulator (CFTR) modulators: analysis of a national specialty pharmacy database. J. Drug Assess. 2021; 10 (1): 62–67. DOI: 10.1080/21556660.2021.1912352.
34. De Vuyst R., Kam C., McKinzie C., Esther C.R. Medication utilization and lung function changes after initiation of treatment with elexacaftor/tezacaftor/ivacaftor. Pediatr. Pulmonol. 2024; 59 (7): 2051–2054. DOI: 10.1002/ppul.27018.
35. Laverty S., Carollo E. Alyftrek’s FDA approval marks another advancement in cystic fibrosis treatment – but is it a true game changer? Available at: https://solici.com/news/alyftreks-fda-approval-a-true-game-changer/ [Accessed: November 22, 2025].
36. Avdeev S.N., Merzhoeva Z.M., Gaynitdinova V.V., Amelina E.L. [Pathogenetic treatment of cystic fibrosis: expanding access to drugs]. Lechaschiy vrach. 2025; (10): 24–31. DOI: 10.51793/OS.2025.28.10.003 (in Russian).
Supplementary files
Review
For citations:
Kashirskaya N.Yu., Amelina E.L., Zinchenko R.A. The new triple CFTR modulator vanzacaftor/tezacaftor/ deutivacaftor (Aliftrek®) and its place in the treatment of cystic fibrosis. PULMONOLOGIYA. 2025;35(6):875-882. (In Russ.) https://doi.org/10.18093/0869-0189-2025-35-6-875-882


































