The course of cystic fibrosis in adult patients with Burkholderia cepacia complex infection
https://doi.org/10.18093/0869-0189-2025-35-2-241-253
Abstract
Cystic fibrosis (CF) is a multi-organ disease, but its course and prognosis in most cases are determined by the pathology of the bronchopulmonary system. One of the most harmful pathogens for patients with CF is Burkholderia cepacia complex (Bcc). These are gram-negative bacteria characterized by high transmissibility and pathogenicity, as well as natural resistance to a wide range of antimicrobial drugs and rapid acquisition of resistance to new antibiotics. This seriously limits the therapeutic possibilities of eradication and treatment of Bcc, progressively reduces the lung function, and significantly limits the life expectancy of patients. A “cepacia syndrome” has also been described for Bcc – a rapidly increasing respiratory failure due to necrotizing pneumonia. Russia belongs to the countries with a relatively high Bcc prevalence of 5.5 %.
The aim of the review was to analyze the literature data on the prevalence of Bcc in adult patients with CF in the Russian Federation, the impact of chronic Bcc infection on the course of CF and survival, including after lung transplantation, and the possibility of its eradication and treatment. Burkholderia cenocepacia ST709, an epidemic species that causes a typical hospital infection, the source of which is patients with CF, is more common in Russian patients. No effective schemes for the eradication and treatment of Bcc have been developed. Targeted therapy with ivacaftor + thesacaftor + elecsacaftor and ivacaftor modulator reduce the degree of Bcc contamination in sputum, but do not lead to its eradication. Lung transplantation in patients with Bcc proceeds with a large number of complications and may require long-term rehabilitation in the post-transplant period. Infection with hospital-acquired species of Bcc is associated with a more severe course of the disease and low survival, and infection with less epidemic species of Bcc probably determines the best prognosis for patients with CF. The role of infection of patients with “wild” species of Bcc has not been determined and requires further study.
Conclusion. Prevention of cross-infection in patients with Всс remains a pressing issue.
Keywords
About the Authors
M. V. AfanasevaRussian Federation
Maria V. Afanaseva, Researcher
Cystic Fibrosis Department
115682; Orekhovyy bul’var 28, build. 10; Moscow
tel.: (926) 139-54-66
Competing Interests:
The authors did not declare any conflicts of interests
S. A. Krasovskiy
Russian Federation
Stanislav A. Krasovskiy, Candidate of Medicine, Senior Researcher, Acting Head of the Laboratory, Leading Researcher
Cystic Fibrosis Laboratory; Scientific and Clinical Department
115682; Orekhovyy bul’var 28, build. 10; 115522; ul. Moskvorechye 1; Moscow
tel.: (495) 111-03-03
Author ID: 688178
Competing Interests:
The authors did not declare any conflicts of interests
E. L. Amelina
Russian Federation
Elena L. Amelina, Candidate of Medicine, Head of the Laboratory
Cystic Fibrosis Laboratory
115682; Orekhovyy bul’var 28, build. 10; Moscow
tel: (495) 410-67-00
Author ID: 7003985681
Competing Interests:
The authors did not declare any conflicts of interests
References
1. Kashirskaya N.Yu., Kapranov N.I., Kondratyeva E.I., eds. [Cystic fibrosis]. Moscow: Medpraktika-M; 2021 Available at: https://mukoviscidoz.org/novosti-meditsiny/904-mukovistsidoz-izdanie-2-epererabotannoe-i-dopolnennoe.html [Accessed: February 16, 2025] (in Russian).
2. Sherman V.D., Kutsev S.I., Izhevskaya V.L., Kondratyeva E.I. [Effectiveness of neonatal screening for cystic fibrosis in the Russian Federation]. Voprosy prakticheskoy pediatrii. 2022; 17 (3): 12–19. DOI: 10.20953/1817-7646-2022-3-12-19 (in Russian).
3. Voronkova A.Yu., Amelina E.L., Kashirskaya N.Yu. et al. (eds). [Register of patients with cystic fibrosis in the Russian Federation. 2022]. Moskow: Medpraktika-M; 2024. Available at: https://mukoviscidoz.org/doc/registr/_Registre_2022.pdf [Accessed: November 27, 2024] (in Russian).
4. Elborn J.S. Cystic fibrosis. Lancet. 2016; 388 (10059): 2519–2531. DOI: 10.1016/S0140-6736(16)00576-6.
5. Kondratyeva E.I., Kashirskaya N.Yu., Kapranov N.I., eds. [National consensus “Cystic fibrosis: definition, diagnostic criteria, therapy”]. Moscow: Borges; 2019. Available at: https://mukoviscidoz.org/doc/konsensus/2019/konsensus-2019-bez-rentgenogramm.pdf [Accessed: February 16, 2025] (in Russian).
6. Verhaeghe С., Delbecque K., de Leval L. et al. Early inflammation in the airways of a cystic fibrosis foetus. J. Cyst. Fibros. 2007; 6 (4): 304–308. DOI: 10.1016/j.jcf.2006.12.001.
7. Krasovskiy S.A., Niconova V.S., Kashirskaya N.Yu. et al. [Clinical and genetic, microbiological and functional characteristics of Moscow and Moscow region patients with cystic fibrosis]. Voprosy sovremennoy pediatrii. 2013; 12 (1): 17–23. doi: 10.15690/vsp.v12i1.554 (in Russian).
8. Shaginyan I.A., Kapranov N.I., Chernukha M.Yu. et al. [Microbial landscape of the lower respiratory tract in different age groups of children with cystic fibrosis]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2010; 87 (1): 15–20. Available at: https://microbiol.crie.ru/jour/article/view/13395 [Accessed: November 27, 2024] (in Russian).
9. Guss A.M., Roeselers G., Newton I.L. et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011; 5 (1): 20–29. DOI: 10.1038/ismej.2010.88.
10. Burkholder W.H. Bacteria as plant pathogens. Annu. Rev. Microbiol. 1948; 2: 389–412. DOI: 10.1146/annurev.mi.02.100148.002133.
11. Lynch K.H., Stothard P., Dennis J.J. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics. 2010; 11: 599. DOI: 10.1186/1471-2164-11-599.
12. Chernukha M.Yu., Shaginyan I.A., Kapranov N.I. et al. [Persistence of Burkholderia cepacia in patients with cystic fibrosis]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2012; 89 (4): 93–98. Available at: https://microbiol.crie.ru/jour/article/view/13755 [Accessed: September 29, 2024] (in Russian).
13. Laraya-Cuasay L.R., Lipstein M., Huang N. Pseudomonas cepacia in the respiratory flora of patients with cystic fibrosis (CF). Pediatr. Res. 1977; 11: 502. DOI: 10.1203/00006450-197704000-00792.
14. Rosenstein B.J., Hall D.E. Pneumonia and septicemia due to Pseudomonas cepacia in a patient with cystic fibrosis. Johns Hopkins Med. J. 1980; 147 (5): 188–189. Available at: https://pure.johnshopkins.edu/en/publications/pneumonia-and-septicemia-due-to-pseudomonas-cepacia-in-a-patient--3 [Accessed: November 28, 2024].
15. Isles A., Maclusky I., Corey M. et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 1984; 104 (2): 206–210. DOI: 10.1016/s0022-3476(84)80993-2.
16. Govan J.R., Brown P.H., Maddison J. et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet. 1993; 342 (8862): 15–19. DOI: 10.1016/0140-6736(93)91881-l.
17. Hauser A.R., Jain M., Bar-Meir M., McColley S.A. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev. 2011; 24 (1): 29–70. DOI: 10.1128/CMR.00036-10.
18. The UK Cystic Fibrosis Trust. The Burkholderia cepacia complex. Suggestions for prevention and infection control. 2sup>nd</sup> Edn. 2004. Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/Burkholderia%20cepacia.pdf [Accessed: November 30, 2024].
19. Zolin A., Bakkeheim E., Van Rens J. et al. ECFSPR 2022 annual data report. 2024. Available at: https://www.ecfs.eu/sites/default/files/Annual%20Report_2022_ECFSPR_20240603.pdf [Accessed: October 1, 2024].
20. Cystic Fibrosis Foundation. 2023 Patient Registry Annual Data Report. Bethesda, Maryland; 2024. Available at: https://www.cff.org/medical-professionals/patient-registry [Accessed: November 30, 2024].
21. [Register of patients with cystic fibrosis in the Russian Federation. 2013]. Moskow: Medpraktika-M; 2015. Available at: https://mukoviscidoz.org/doc/registr/_Registre_2015final.pdf [Accessed: December 22, 2024] (in Russian).
22. De Soyza A., Ellis C.D., Khan C.M. et al. Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am. J. Respir. Crit. Care Med. 2004; 170 (1): 70–77. DOI: 10.1164/rccm.200304-592OC.
23. Mahenthiralingam E., Urban T.A., Goldberg I.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 2005; 3 (2): 144–156. DOI: 10.1038/nrmicro1085.
24. Sajjan U., Wu Y., Kent G., Forstner J. Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J. Med. Microbiol. 2000; 49 (10): 875–885. DOI: 10.1099/0022-1317-49-10-875.
25. Ferreira A.S., Silva I.N., Oliveira V.H. et al. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front. Cell. Infect. Microbiol. 2011; 1: 16. DOI: 10.3389/fcimb.2011.00016.
26. Chernukha M.Yu., Danilina G.A., Alekseeva G.V. et al. [The role of “quorum sensing” regulation system in biofilms formation of bacteria Burkholderia cepacia and Pseudomonas aeruginosa]. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2009; 86 (4): 39–43. Available at: https://microbiol.crie.ru/jour/article/view/13295 [Accessed: November 30, 2024] (in Russian).
27. TavaresM., KozakM., BalolaA., Sá-Correia I. Burkholderia cepacia complex bacteria: a feared contamination risk in water-based pharmaceutical products. Clin. Microbiol. Rev. 2020; 33 (3): e00139-19. DOI: 10.1128/CMR.00139-19.
28. Jin Y., Zhou J., Zhou J. et al. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol. Direct. 2020; 15 (1): 6. DOI: 10.1186/s13062-020-0258-5.
29. Lambiase A., Catania M.R., Del Pezzo M. et al. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2011; 30 (8): 973–980. DOI: 10.1007/s10096-011-1182-5.
30. Voronina O.L., Kunda M.S., Aksenova E.I. et al. [The express diagnostic of microorganisms affecting respiratory tract of patients with cystic fibrosis]. Klinicheskaya laboratornaya diagnostika. 2013; (11): 53–57. Available at: https://cyberleninka.ru/article/n/ekspress-diagnostika-mikroorganizmov-porazhayuschih-dyhatelnye-puti-bolnyh-mukovistsidozom [Accessed: October 3, 2024] (in Russian).
31. Avetisyan l.R., Chernukha M.Yu., Shaginyan I.A. et al. [Application of modern methods in microbiological diagnosis of chronic infection of lungs in patients with cystic fibrosis]. Sibirskoe meditsinskoe obozrenie. 2019; (2): 70–79. DOI: 10.20333/2500136-2019-2-70-79 (in Russian).
32. Avetisyan L.R., Shaginyan I.A., Chernukha M.Yu. et al. [Directions of epidemiological surveillance of chronic lung infections caused by Burkholderia cepacia complex, Achromobacter spp., Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in patients with cystic fibrosis]. Epidemiologiya i vaktsinoprofilaktika. 2020; 19 (10): 14–23. DOI: 10.31631/2073-3046-2020-19-1-14-23 (in Russian).
33. Drevinek P., Baldwin A., Dowson C.G., Mahenthiralingam E. Diversity of the parB and repA genes of the Burkholderia cepacia complex and their utility for rapid identification of Burkholderia cenocepacia. BMC Microbiol. 2008; 8: 44. DOI: 10.1186/1471-2180-8-44.
34. Zlosnik J.E., Zhou G., Brant R. et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years’ experience. Ann. Am. Thorac. Soc. 2015; 12 (1): 70–78. DOI: 10.1513/AnnalsATS.201408-395OC.
35. Geake J.B., Reid D.W., Currie B.J. et al. An international multicentre evalution and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm. Med. 2015; 15: 116. DOI: 10.1186/s12890-015-0109-9.
36. Voronina O.L., Ryzhova N.N., Kunda M.S. et al. [Major tendencies in burkholderia diversity changes, infecting Russian patients with cystic fibrosis]. Sibirskoe meditsinskoe obozrenie. 2019; (2): 80–88. DOI: 10.20333/2500136-2019-2-80-88 (in Russian).
37. Voronina O.L., Chernukha M.Yu., Shaginyan I.A. et al. [Characterization of genotypes for Burkholderia cepacia complex strains isolated from patients in hospitals of Russian Federation]. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2013; (2): 22–30. Available at: https://cyberleninka.ru/article/n/harakteristika-genotipov-shtammov-burkholderia-cepacia-complex-vydelennyh-ot-bolnyh-v-statsionarah-rossiyskoy-federatsii [Accessed: October 3, 2024] (in Russian).
38. Mahenthiralingam E., Vandamme P., Campbell M.E. et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin. Infect. Dis. 2001; 33 (9): 1469–1475. DOI: 10.1086/322684.
39. McClean S., Callaghan M. Burkholderia cepacia complex: epithelial cell-pathogen confrontation and potential for therapeutic intervention. J. Med. Microbiol. 2009; 58 (1): 1–12. DOI: 10.1099/jmm.0.47788-0.
40. HøibyN. Cystic fibrosis and endobronchial pseudomonas infection. Curr. Opin. Pediatr. 1993; 5 (3): 247–254. DOI: 10.1097/00008480-199306000-00002.
41. Zhou J., Chen Y., Tabibi S. et al. Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2007; 51 (3): 1085–1088. DOI: 10.1128/AAC.00954-06.
42. Speert D.P. Advances in Burkholderia cepacia complex. Paediatr. Respir. Rev. 2002; 3 (3): 230–235. DOI: 10.1016/s1526-0542(02)00185-9.
43. Cohen N.R., Lobritz M.A., Collins J.J. Microbial persistence and road to drug resistance. Cell Host Microbe. 2013; 13 (6): 632–642. DOI: 10.1016/j.chom.2013.05.009.
44. Chernukha M.Yu., Avetisyan L.R., Shaginyan I.A. et al. [Phenotypic and genotypic characteristics of strains of the bacterium Burkholderia cepacia complex isolated from cystic fibrosis patients]. Pediatriya. Zhurnal im. G.N. Speranskogo. 2014; 93 (4): 24–31. Available at: https://pediatriajournal.ru/archive?show=336§ion=4016 [Accessed: October 6, 2024] (in Russian).
45. Labbate M., Case R.J., Stokes H.W. The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol. Biol. 2009; 532: 103–125. DOI: 10.1007/978-1-60327-853-9_6.
46. Coutinho C.P., de Carvalho C.C., Maderia A. et al. Burkholderia cepacia phenotypic clonal variation during a 3,5-year colonization in the lungs of a cystic fibrosis patient. Infect. Immun. 2011; 79 (7): 2950–2960. DOI: 10.1128/IAI.01366-10.
47. Semykin S.Yu., Postnikov S.S., Polikarpova S.V. et al. [Burkholderia cepacia – new threat for patients with cystic fibrosis]. Detskaya bol’nitsa. 2013; (2): 52–55. Available at: https://rdkb.ru/files/file2029.pdf [Accessed: November 14, 2024] (in Russian).
48. Аfanaseva M.V., Krasovskiy S.A., Amelina E.L. et al. [Survival of adult cystic fibrosis patients with chronic respiratory tract infection caused by microorganisms Burkholderia cepacia complex]. Prakticheskaya pul’monologiya. 2018; (1): 60–64. Available at: https://atmosphere-ph.ru/modules/Magazines/articles//pulmo/pp_1_2018_60.pdf [Accessed: September 29, 2024] (in Russian).
49. Krasovskiy S.A., Chernyak A.V., Amelina E.L. et al. [Survival trends of cystic fibrosis patients in Moscow and Moscow region in 1992–2001 and 2002–2011]. Pul’monologiya. 2012; (3): 79–86. DOI: 10.18093/0869-0189-2012-0-3-79-86 (in Russian).
50. Navarro J., Rainisio M., Harms H.K. et al. Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. Eur. Respir. J. 2001; 18 (2): 298–305. DOI: 10.1183/09031936.01.00068901.
51. Blanchard A.C., Tang L., Tadros M. et al. Burkholderia cenocepacia ET12 transmission in adults with cystic fibrosis. Thorax. 2020; 75 (1): 88–90. DOI: 10.1136/thoraxjnl-2019-214098.
52. Somayaji R., Yau Y., Tullis E. et al. Clinical outcomes associated with Burkholderia cepacia complex infection in patients with cystic fibrosis. Ann. Am. Thorac. Soc. 2020; 17 (12): 1542–1548. DOI: 10.1513/AnnalsATS.202003-204OC.
53. Ledson M.J., Gallagher M.J., Corkill J.E. et al. Cross infection between cystic fibrosis patients colonised with Burkholderia cepacia. Thorax. 1998; 53 (5): 432–436. DOI: 10.1136/thx.53.5.432.
54. Lipuma J.J. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 2010; 23 (2): 299–323. DOI: 10.1128/CMR.00068-09.
55. Blackburn L., Brownlee K., Conway S.P., Denton M. “Cepacia syndrome” with Burkholderia multivorans, 9 years after initial colonization. J. Cyst. Fibros. 2004; 3 (2): 133–134. DOI: 10.1016/j.jcf.2004.03.007.
56. Daccò V., Alicandro G., Consales A. et al. Cepacia syndrome in cystic fibrosis : a systematic review of the literature and possible new perspectives in treatment. Pediatr. Pulmonol. 2023; 58 (5): 1337–1343. DOI: 10.1002/ppul.26359.
57. Regan K.H., Bhatt J. Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst. Rev. 2019; 4 (4): CD009876. DOI: 10.1002/14651858.CD009876.pub4.
58. Horsley A., Webb K., Bright-Thomas R. et al. Can early Burkholderia cepacia complex infection in cystic fibrosis be eradicated with antibiotic therapy? Front. Cell. Infect. Microbiol. 2011; 1: 18. DOI: 10.3389/fcimb.2011.00018.
59. Folescu T.W., da Costa C.H., Cohen R.W. et al. Burkholderia cepacia complex: clinical course in cystic fibrosis patients. BMC Pulm. Med. 2015; 15: 158. DOI: 10.1186/s12890-015-0148-2.
60. Frost F., Shaw M., Nazareth D. Antibiotic therapy for chronic infection with Burkholderia cepacian complex in people with cystic fibrosis. Cochrane Database Syst. Rev. 2021; 12 (12): CD013079. DOI: 10.1002/14651858.CD013079.pub3.
61. Uluer A.Z., Waltz D.A., Kalish L.A. et al. Inhaled amiloride and tobramycin solutions fail to eradicate Burkholderia dolosa in patients with cystic fibrosis. J. Cyst. Fibros. 2013; 12 (1): 54–59. DOI: 10.1016/j.jcf.2012.06.006.
62. Zeiser E.T., Becka S.A., Wilson B.M. et al. “Switching Partners”: piperacillin-avibactam is a highly potent combination against multidrug-resistant Burkholderia cepacia complex and Burkholderia gladioli cystic fibrosis isolates. J. Clin. Microbiol. 2019; 57 (8): e00181-19. DOI: 10.1128/JCM.00181-19.
63. Becka S.A., Zeiser E.T., LiPuma J.J., Papp-Wallace K.M. Activity of imipenem-relebactam against multidrug- and extensively drug-resistant Burkholderia cepacia complex and Burkholderia gladioli. Antimicrob. Agents. Chemother. 2021; 65 (11): e0133221. DOI: 10.1128/AAC.01332-21.
64. Mojica M.F., Zeiser E.T., Becka S.A. et al. Examining the activity of cefepime-taniborbactam against Burkholderia cepacia complex and Burkholderia gladioli isolated from cystic fibrosis patients in the United States. Antimicrob. Agents Chemother. 2023; 67 (11): e0049823. DOI: 10.1128/aac.00498-23.
65. Skurnik D., Davis M.R. Jr, Benedetti D. et al. Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. J. Infect. dis. 2012; 205 (11): 1709–1718. DOI: 10.1093/infdis/jis254.
66. Lauman P., Dennis J.J. Advances in phage therapy: targeting the Burkholderia cepacia. Viruses. 2021; 13 (7): 1331. DOI: 10.3390/v13071331.
67. Kamal F., Dennis J.J. Burkholderia cepacia complex phageantibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol. 2015; 81 (3): 1132–1138. DOI: 10.1128/AEM.02850-14.
68. Aslam S., Courtwiright A.M., Koval C.E. et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. 2019; 19 (9): 2631–2639. DOI: 10.1111/ajt.15503.
69. Roda J., Pinto-Silva C., Silva I.A.I. et al. New drugs in cystic fibrosis: what has changed in the last decade? Ther. Adv. Chronic. Dis. 2022; 13: 20406223221098136. DOI: 10.1177/20406223221098136.
70. Taylor-Cousar J.L., Mall M.A., Ramsey B.W. et al. Clinical devel-opment of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles. ERJ Open Res. 2019; 5 (2): 00082-2019. DOI: 10.1183/23120541.00082-2019.
71. Nichols D.P., Morgan S.J., Skalland M. et al. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J. Clin. Invest. 2023; 133 (10): e167957. DOI: 10.1172/JCI167957.
72. Bower J.K., Volkova N., Ahluwalia N. et al. Real-world safety and effectiveness of elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis: Interim results of a long-term registry-based study. J. Cyst. Fibros. 2023; 22 (4): 730–737. DOI: 10.1016/j.jcf.2023.03.002.
73. Gilchrist F.J., Webb A.K., Bright-Thomas R.J., Jones A.M. Successful treatment of cepacia syndrome with a combination of intravenous cyclosporin, antibiotics and oral corticosteroids. J. Cyst. Fibros. 2012; 11 (5): 458–460. DOI: 10.1016/j.jcf.2012.04.002.
74. Etherington C., Peckham D.G., Conway S.P., Denton M. Burkholderia cepacia complex infection in adults with cystic fibrosis – is early eradication possible? J. Cyst. Fibrosis. 2003; 2 (4): 220–221. DOI: 10.1016/S1569-1993(03)00096-1.
75. Tewkesbury D.H., Pollard L.R., Green H.D. et al. When is Burkholderia cepacia complex truly eradicated in adults with cystic fibrosis? A 20-year follow up study. J. Cyst. Fibros. 2024; 23 (1): 87–90. DOI: 10.1016/j.jcf.2023.09.016.
76. Radhakrishna N., Morton J. Burkholderia pseudomallei in cystic fibrosis and treatment complications. Respirol. Case Rep. 2015; 3 (1): 1–2. DOI: 10.1002/rcr2.86.
77. Murray S., Charbeneau J., Marshall B.C., LiPuma J.J. Impact of Burkholderia infection on lung transplantation in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2008; 178 (4): 363–371. DOI: 10.1164/rccm.200712-1834OC.
78. Stephenson A.L., Sykes J., Berthiaume Y. et al. Clinical and demographic factors associated with post-lung transplantation survival in individuals with cystic fibrosis. J. Heart Lung Transplant. 2015; 34 (9): 1139–1145. DOI: 10.1016/j.healun.2015.05.003.
79. Aris R.M., Routh J.C., LiPuma J.J. et al. Burkholderia cepacia complex in cystic fibrosis patients after lung transplantation: survival linked to genomovar type. Am. J. Respir. Crit .Care Med. 2001; 164 (11): 2102–2106. DOI: 10.1164/ajrccm.164.11.2107022.
80. Gautier S.V., Golovinsky S.V., Poptsov V.N. et al. [Lung transplantation in cystic fibrosis patient with chronic airways infection of Burkholderia cepacia (the first case in Russian Federation)]. Vestnik transplantologii i iskusstvennykh organov. 2016; 18 (2): 110–116. DOI: 10.15825/1995-1191-2016-2-110-116 (in Russian).
81. De Soyza A., Meachery G., Hester K.L. et al. Lung transplantation for patients with cystic fibro sis and Burkholderia cepacia complex infection: a single-center experience. J. Heart Lung Transplant. 2010; 29 (12): 1395–1404. DOI: 10.1016/j.healun.2010.06.007.
Supplementary files
Review
For citations:
Afanaseva M.V., Krasovskiy S.A., Amelina E.L. The course of cystic fibrosis in adult patients with Burkholderia cepacia complex infection. PULMONOLOGIYA. 2025;35(2):241-253. (In Russ.) https://doi.org/10.18093/0869-0189-2025-35-2-241-253