Preview

PULMONOLOGIYA

Advanced search

Impulse oscillometry parameters and diffusing capacity of the lung in patients with pulmonary tuberculosis: is there an inter-relationship?

https://doi.org/10.18093/0869-0189-2024-4593

Abstract

Assessment of pulmonary gas exchange is essential in patients with respiratory diseases. However, the diffusing capacity of the lung cannot be assessed in some patients due to their physical condition or cognitive limitations. Impulse oscillometry requires minimum patient cooperation, is easy for patients, and allows for quick, reproducible measurements. The aim of the study was to determine the relationship between impulse oscillometry parameters and diffusing capacity of the lung in patients with pulmonary tuberculosis. Methods. This was a retrospective observational study in adult patients with a confirmed diagnosis of pulmonary tuberculosis. We evaluated their spirometry, body plethysmography, Carbon Monoxide Diffusing Capacity (DLCO), and impulse oscillometry measurements. The study did not include patients with smoking experience of more than 10 pack-years, nonspecific respiratory diseases, chest surgery, and extrapulmonary causes of chest mobility restriction. The Kruskal – Wallis criterion, the χ2 criterion, Spearman rank correlation, and ROC analysis were used. Results. A moderate relationship was revealed between DLCO and IOS parameters: with frequency dependence of resistance (Rrs5–20), resonant frequency (Fres), deviation of reactance at 5 Hz from the predicted value (∆Xrs5), and reactance at 5 Hz (Xrs5) (–0.32; –0.33; –0.34; 0.32, respectively, p < 0.05). The reactance area (AX) showed a considerable relationship with DLCO and alveolar volume (VA) (–0.51; –0.57, respectively, p < 0.05) and a moderate relationship with the poorly Poorly Communication Fraction (PCF) 0,31 (p < 0,05). The ROC analysis showed that if DLCO was less than 75%, the cut-off level of AX was 0.30 kPa/l (AUC = 0,746), and if DLCO was less than 50%, the cut-off level of AX was 0.41 kPa/l (AUC = 0,840). Conclusion. The diffusing capacity of the lung in patients with pulmonary tuberculosis correlates with the changes in total respiratory resistance and its components.

About the Authors

L. D. Kiryukhina
Federal State Budgetary Institution “Pulmonology Scientific Research Institute” under Federal Medical and Biological Agency of Russian Federation; Russian Federation Healthcare Ministry Saint-Petersburg State Phthisiopulmonology Research Institute
Russian Federation

Larisa D. Kiryukhina, Candidate of Medicine, Head of the Department of Functional and Ultrasound Diagnostics, Leading Researcher, Laboratory of Pathophysiology of Respiration; Head of the Research Laboratory of Functional Research

Author ID: 342739;

Orekhovyy bul’var 28, Moscow, 115682; 
Ligovsky pr. 2 – 4, Saint-Petersburg, 191036;

tel.: (495) 410-39-00


Competing Interests:

The authors declare no conflict of interest.



E. V. Kokorina
Russian Federation Healthcare Ministry Saint-Petersburg State Phthisiopulmonology Research Institute
Russian Federation

Elena V. Kokorina, Physician, Functional Diagnostics Department 

Ligovsky pr. 2 – 4, Saint-Petersburg, 191036;

tel. (812) 775-75-50


Competing Interests:

The authors declare no conflict of interest.



P. K. Yablonskiy
Russian Federation Healthcare Ministry Saint-Petersburg State Phthisiopulmonology Research Institute; Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University”, Government of the Russian Federation
Russian Federation

Petr K. Yablonskiy, Doctor of Medicine, Professor, Head; Vice-Rector for Medicine

Ligovsky pr. 2 – 4, Saint-Petersburg, 191036; 
Universitetskaya Naberezhnaya 7/9, Saint-Petersburg, 199034;

tel.: (812) 775-75-50


Competing Interests:

The authors declare no conflict of interest.



References

1. Smith H., Reinhold P., Goldman M. Forced oscillation technique and impulse oscillometry. Eur. Respir. Monogr. 2005; 31 (31): 72–105. DOI: 10.1183/1025448x.00031005.

2. Kiryukhina L.D., Chernyak A.V. [Oscillometry: clinical significance and applications]. Pul’monologiya. 2023; 33 (6): 798–808. DOI: 10.18093/0869-0189-2023-33-6-798-808 (in Russian).

3. Bednarek M., Grabicki M., Piorunek T., Batura-Gabryel H. [Current place of impulse oscillometry in the assessment of pulmonary diseases]. Respir. Med. 2020; 170: 105952. DOI: 10.1016/j.rmed.2020.105952.

4. Brashier B., Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe (Sheff.). 2015; 11 (1): 57–65. DOI: 10.1183/20734735.020514.

5. Yamagami H., Tanaka A., Kishino Y. et al. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 13: 79–89. DOI: 10.2147/COPD.S146669.

6. Savushkina O.I., Chernyak A.V., Kameneva M.Yu. et al. [A role of impulse oscillometry for diagnosis of mild bronchial obstruction]. Pul’monologiya. 2018; 28 (4): 391–398. DOI: 10.18093/0869-0189-2018-28-4-391-398 (in Russian).

7. Savushkina O.I., Kryukov E.V., Cherniak A.V. et al. [The use of impulse oscillometry in patients with asthma]. Byulleten’ fiziologii i patologii dykhaniya. 2019; (73): 34–41. DOI: 10.36604/1998-5029-2019-73-34-41 (in Russian).

8. Savushkina O.I., Cherniak A.V., Kryukovet E.V. et al. [The diagnosis of severe obstructive respiratory mechanics defects by impulse oscillometry system]. Byulleten’ fiziologii i patologii dykhaniya. 2019; (72): 39–46. DOI: 10.12737/article_5d09e408a83da5.52226087 (in Russian).

9. Leontieva N.M., Demko I.V., Sobko E.A. et al. [Impulse oscillometry for diagnosis of early changes in the respiratory system functional state in patients with mild asthma]. Arkhiv” vnutrenney meditsiny. 2019; 9 (3): 213–221. DOI: 10.20514/2226-6704-2019-9-3-213-221 (in Russian).

10. Wei X., Shi Z., Cui Y et al. Impulse oscillometry system as an alternative diagnostic method for chronic obstructive pulmonary disease. Medicine (Baltimore). 2017; 96 (46): e8543. DOI: 10.1097/MD.0000000000008543.

11. Lee H.J., Kim H.S., Yoon J.S. Impulse oscillometry system for assessing small airway dysfunction in pediatric bronchiolitis obliterans; association with conventional pulmonary function tests. PloS One. 2023; 18 (2): e0280309. DOI: 10.1371/journal.pone.0280309.

12. Kiryukhina L.D., Kameneva M.Yu., Novikova L.N. [Possibilities of pulsed oscillometry in diagnostics of a restrictive version of ventilation disorders]. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2017; 59 (5): 136–141. DOI: 10.23670/IRJ.2017.59.032 (in Russian).

13. Savushkina O.I., Cherniak A.V., Kameneva M.Yu et al. [Informativeness of impulse oscillometry in the detection of restrictive type ventilation disorders]. Byulleten’ fiziologii i patologii dykhaniya. 2018; (67): 8–16. DOI: 10.12737/article_5a9f258fe6d932.79474351 (in Russian).

14. Takeichi N., Yamazaki H., Fujimoto K. Comparison of impedance measured by the forced oscillation technique and pulmonary functions, including static lung compliance, in obstructive and interstitial lung disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 1109–1118. DOI: 10.2147/COPD.S198030.

15. Mori Y., Nishikiori H., Chiba H. et al. Respiratory reactance in forced oscillation technique reflects disease stage and predicts lung physiology deterioration in idiopathic pulmonary fibrosis. Respir. Physiol. Neurobiol. 2020; 275: 103386. DOI: 10.1016/j.resp.2020.103386.

16. Yamamoto Y., Hirata H., Shiroyama T. et al. Respiratory impedance is associated with ventilation and diffusing capacity in patients with idiopathic pulmonary fibrosis combined with emphysema. Int. J. Chron. Obstruct. Pulmon. Dis. 2022; 1 (17): 1495–1506. DOI: 10.2147/COPD.S368162.

17. Duman D., Taştı Ö.F., Merve Tepetam F. Assessment of small airway dysfunction by impulse oscillometry (IOS) in COPD and IPF patients. Eur. Rev. Med. Pharmacol. Sci. 2023; 27 (7): 3033–3044. DOI: 10.26355/eurrev_202304_31937.

18. Matesanz-López C., Raboso-Moreno B., Saldaña-Pérez L.E. et al. Is lung function measured by oscillometry useful in interstitial lung diseases? Open Respir. Arch. 2023; 6 (1): 100278. DOI: 10.1016/j.opresp.2023.100278.

19. Ishikawa T., Nishikiori H., Mori Y. et al. The impact of respiratory reactance in oscillometry on survival in patients with idiopathic pulmonary fibrosis. BMC Pulm. Med. 2024; 24 (1): 10. DOI: 10.1186/s12890-023-02776-y.

20. Oostveen E., MacLeod D., Lorino H. et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur. Respir. J. 2003; 22 (6): 1026–1041. DOI: 10.1183/09031936.03.00089403.

21. Bickel S., Popler J., Lesnick B., Eid N. Impulse oscillometry: interpretation and practical applications. Chest. 2014; 146 (3): 841–847. DOI: 10.1378/chest.13-1875.

22. Chushkin M., Popova L., Shergina E. et al. [Ventilation function of lung and quality of life after cured pulmonary tuberculosis]. Medicinskiy al’yans. 2021; 9 (4): 37–44. DOI: 10.36422/23076348-2021-9-4-37-44 (in Russian).

23. Volodich О., Kiryukhina L., Denisova N. et al. [The impulse oscillometry technique in patients with pulmonary tuberculosis in pre- and post-operative surgical treatment]. Medicinskiy al’yans. 2019; 7 (4): 30–38. Available at: https://med-alyans.spbniif.ru/index.php/Hahn/article/view/619 (in Russian).

24. Kiryukhina L.D., Volodich O.S., Denisova N.V. et al. [Impulse oscillometry in the diagnosis of obstructive ventilation disorders in pulmonary tuberculosis patients]. Tuberkulez i bolezni legkikh. 2019; 97 (11): 34–40. DOI: 10.21292/2075-1230-2019-97-11-34-40 (in Russian).

25. Zhukova E.M., Vokhminova L.G. [The forced oscillation test in the diagnosis of obstructive ventilation disorders in pulmonary tuberculosis patients]. Tuberkulez i bolezni legkikh. 2021; 99 (11): 43–46. DOI: 10.21292/2075-1230-2021-99-11-43-46 (in Russian).

26. Graham B.L., Brusasco V., Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49 (1): 1600016. DOI: 10.1183/13993003.00016-2016.

27. Graham B.L., Steenbruggen I., Miller M. R. et al. Standardization of spirometry 2019 update an official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70–88. DOI: 10.1164/rccm.201908-1590ST.

28. Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26 (3): 511–522. DOI: 10.1183/09031936.05.00035005.

29. Beresten N.F., Sandrikov V.A., Fedorova S.I. [Functional diagnostics: National recommendations]. Moscow: GEOTAR-Media; 2019: 566–645 (in Russian).

30. Neder J.A., O’Donnell C.D., Cory J. et al. Ventilation distribution heterogeneity at rest as a marker of exercise impairment in mild-to-advanced COPD. COPD. 2015; 12 (3): 249–256. DOI: 10.3109/15412555.2014.948997.

31. Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Report working party standardization of lung function tests, European Community for Steel and Coal: Official statement of the European Respiratory Society. Eur. Respir. J. 1993; 16: 5–40. DOI: 10.1183/09041950.005s1693.

32. King G.G., Bates J., Berger K.I. et al. Technical standards for respiratory oscillometry. Eur. Respir. J. 2020; 55 (2): 1900753. DOI: 10.1183/13993003.00753-2019.

33. Vogel J., Smidt U. Impulse oscillometry: Analysis of lung mechanics in general practice and the clinic, epidemiological and experimental research. Frankfurt am Main: pmi-Verl.-Gruppe; 1994.

34. Neder J.A., Marillier M., Bernard A.C., et al. Transfer coefficient of the lung for carbon monoxide and the accessible alveolar volume: clinically useful if used wisely. Breathe (Sheff.). 2019; 15 (1): 69–76. DOI: 10.1183/20734735.0345-2018.


Supplementary files

Review

For citations:


Kiryukhina L.D., Kokorina E.V., Yablonskiy P.K. Impulse oscillometry parameters and diffusing capacity of the lung in patients with pulmonary tuberculosis: is there an inter-relationship? PULMONOLOGIYA. 2025;35(1):75-85. (In Russ.) https://doi.org/10.18093/0869-0189-2024-4593

Views: 239


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)