1. Buranov S.N., Karelin V.I., Selemir V.D., Shirshin A.S. [Device for producing nitric oxide]. Patent RU No.2553290. Available at: https://www1.fips.ru/iiss/document.xhtml?faces-redirect=true&id=e10d4b252c79b39c12ea31ccaabc9b20 (in Russian).
2. Buranov S.N., Gorokhov V.V., Karelin V.I. et al. [Pulse-periodic diffuse discharge with self-ionization in a gas flow]. Zhurnal tekhnicheskoy fiziki. 2020; 90 (5): 755-759. https://doi.org/10.1134/S1063784220050060 (in Russian).
3. Buranov S.N., Karelin V.I., Selemir V.D. et al. [Device for inhalation therapy with nitric oxide “Tianox” and the first experience of its clinical use in cardiac surgery]. In: [Proceedings of the scientific and educational conference “Topical issues and innovative technologies in anesthesiology and resuscitation”]. St. Petersburg; 2018: 4-9. Available at: https://spboar.ru/materialy/sborniki-materialov/sbornik-tezisov-aktualnye-voprosy-i-innovatsionnye-tekhnologii-v-anesteziologii-i-reanimatologii (in Russian).
4. Buranov S.N., Karelin V.I., Selemir V.D., Shirshin A.S. [Device for inhalation NO-therapy]. 2019; (5): 158-159. https://doi.org/10.1134/S0032816219040037 (in Russian).
5. Selemir V.D., Buranov S.N., Shirshin A.S. [Modern engineering solutions for creating an original domestic nitrogen oxide generator (Tianox)]. In: Russian congress with international participation “Innovative technologies for the use of medical gases in modern clinical practice”. Moscow; 2023. Available at: https://spulmo.ru/kongressy/33-kongress/1-rossiyskiy-kongress-innovatsionnye-tekhnologii-primeneniya-meditsinskikh-gazov-v-sovremennoy-klini/?ysclid=lxk65miv53679237549 (in Russian).
6. Dzierba A.L, Abel E.E., Buckley M.S., Lat I. A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or acute respiratory distress syndrome. Pharmacotherapy. 2014; 34 (3): 279-290. https://doi.org/10.1002/phar.1365.
7. Fox-Robichaud A., Payne D., Hasan S.U. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest. 1998; 101 (11): 2497-2505. https://doi.org/10.1172/JCI2736.
8. McMahon T.J., Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc. Am. Thorac. Soc. 2006; 3 (2): 153-160. https://doi.org/10.1513/pats.200507-066BG.
9. Hataishi R., Rodrigues A.C., Neilan T.G. et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemiareperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2006; 291 (1): H379-384. https://doi.org/10.1152/ajpheart.01172.2005.
10. Liu X., Huang Y., Pokreisz P. et al. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J. Am. Coll. Cardiol. 2007; 50 (8): 808-817. https://doi.org/10.1016/j.jacc.2007.04.069.
11. Ohsawa I., Ishikawa M., Takahashi K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007; 13 (6): 688-694. https://doi.org/10.1038/nm1577.
12. Hayashida K., Sano M., Ohsawa I. et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2008; 373 (1): 30-35. https://doi.org/10.1016/j.bbrc.2008.05.165.
13. Yoshida A., Asanuma H., Sasaki H. et al. H(2) mediates cardioprotection via involvements of K(ATP) channels and permeability transition pores of mitochondria in dogs. Cardiovasc. Drugs Ther. 2012; 26 (3): 217-226. https://doi.org/10.1007/s10557-012-6381-5.
14. Shinbo T., Kokubo K., Sato Y. et al. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Heart Circ. Physiol. 2013; 305 (4): 542-550. https://doi.org/10.1152/ajpheart.00844.2012.
15. Liu H., Liang X., Wang D. et al. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock. 2015; 43 (5): 504-511. https://doi.org/10.1097/SHK.0000000000000316.
16. Radchenko R.V., Mokrushin A.S., Tyul'pa V.V. [Hydrogen in energy: textbook]. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta; 2014. Available at: https://elar.urfu.ru/bitstream/10995/30843/1/978-5-7996-1316-7.pdf?ysclid=lxkc5u55dy492068729 (in Russian).
17. Grigor'ev S.A., Porembskiy V.I., Fateev V.N. et al. [Hydrogen production by electrolysis of water: current state, problems and prospects]. Transport na al'ternativnom toplive. 2008; 3 (3): 62-69. Available at: https://cyberleninka.ru/article/n/poluchenie-vodoroda-elektrolizom-vody-sovremennoe-sostoyanie-problemy-i-perspek?ysclid=lxkcjz3dwj950534704 (in Russian).
18. Navarro R.M., Guil R., Fierro J.L.G. 2 Introduction to hydrogen production. In: Subramani V., Angelo Basile A., Veziroğlu T.N., eds. Compendium of Hydrogen Energy. Woodhead Rulishing; 2015; 21‒61. https://doi.org/10.1016/B978-1-78242-361-4.00002-9.
19. Korobtsev S.V. [Development of the fundamentals of technology for the production and use of hydrogen based on high-temperature solid oxide electrochemical reversible systems. Report]. In: International forum “Russian research and development in the field of hydrogen technologies”. Moscow; 2006 (in Russian).
20. Fateev V.N., Archakov O.V., Lyutikova E.K. et al. [Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure]. Elektrokhimiya. 1993; 29 (4): 551‒557. Dostupno na: https://elibrary.ru/azxnqt?ysclid=lxkdmkwgc1940856586 (in Russian).
21. Grigor'ev S.A., Khaliullin M.M., Kuleshov N.V., Fateev V.N. [Electrolysis of water in a system with a solid polymer electrolyte at elevated pressure]. Elektrokhimiya. 2001; 37 (8): 953‒957. Dostupno na: https://www.elibrary.ru/item.asp?id=44584520 (in Russian).
22. Pakhomov V.P., Fateev V.N. [Electrolysis of water with solid polymer electrolyte]. Moscow: IAE imeni I.V.Kurchatova, 1990 (in Russian).
23. Akimov A.A., Alekseev S.V., Rogov Yu.N., Shkolyarenko V.V. [Electrochemical facility]. Patent RU 2211885. 2003. Dostupno na: https://www1.fips.ru/iiss/document.xhtml?faces-edirect=true&id=53e47761a8216a582e405467f74e866e (in Russian).
24. Passport - operating manual “Hydrogen Generator “Kulon”, KLN.4.970.001 RE. Available at: https://kulon.nnov.ru/main/4/7 (in Russian).
25. Pozdnyakova D.D., Baranova I.A., Selemir V.D., Chuchalin A.G. [Combination therapy with medical gases (nitric oxide and molecular hydrogen): safety assessment]. Pul’monologiya. 2024; 34 (1): 42-49. https://doi.org/10.18093/0869-0189-2024-34-1-42-49 (in Russian).
26. Pichugin V.V., Deryugina A.V., Domnin S.E. et al. [The first experience of the combined use of nitric oxide and molecular hydrogen for cardiac surgery in high-risk patients]. Pul’monologiya. 2024; 34 (1): 32-41. https://doi.org/10.18093/0869-0189-2024-34-1-32-41.