ДЕФЕНЗИНЫ И ДРУГИЕ ПРОТИВОМИКРОБНЫЕ ПЕПТИДЫ: РОЛЬ НАРУШЕНИЙ БЕЛОКСИНТЕЗИРУЮЩЕЙ СПОСОБНОСТИ НЕЙТРОФИЛОВ В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЙ ОРГАНОВ ДЫХАНИЯ


https://doi.org/10.18093/0869-0189-2014-0-3-104-112

Полный текст:


Аннотация

Обзор научных публикаций предназначен для ознакомления научной и врачебной общественности с новыми механизмами противомикробной защиты при заболеваниях органов дыхания. Обсуждаются вопросы применения методов их диагностики в клинической практике и определения перспективных путей научных исследований в данном направлении.

Об авторе

В. Ю. Мишланов
ГБОУ ВПО "Пермская государственная фармацевтическая академия им. акад. Е.А.Вагнера" Минздрава России: 614990, Пермь, ул. Петропавловская, 26
Россия

д. м. н., профессор, зав. кафедрой пропедевтики внутренних болезней № 1 ГБОУ ВПО ПГФА им. акад. Е.А.Вагнера Минздрава России; тел.: (342) 12-90-98



Список литературы

1. Zeya H.I., Spitznagel J.K. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 1963; 142: 1085–1087.

2. Hultmark D., Steiner H., Rasmuson T., Boman H.G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980; 106: 7–16.

3. Ganz T., Selsted M.E., Szklarek D. et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 1985; 76: 1427–1435.

4. McDermott A.M. Defensins and other antimicrobial peptides at the ocular surface. Ocul. Surf. 2004; 2 (4): 229–247.

5. Будихина А.С., Пинегин Б.В. Дефензины – мультифункциональные катионные пептиды человека. Иммунопатология, аллергология, инфектология. 2008; 2: 31–40. / Budikhina A.S., Pinegin B.V. Defensins as a multifunctional human cationic peptides. Immunopatologia, allergologia i infektologia. 2008; 2: 31–40 (in Russian).

6. Bauer F., Schweimer K., Kluver E. et al. Structure determination of human and murine b-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 2001; 10 (12): 2470–2479.

7. Schroeder J.-M., Harder J. Human beta-defensing-2. Int. J. Biochem. Cell. Biol. 1999; 31 (6): 645–651.

8. Schneider J.J., Unholzer A., Schaller M. et al. Human defensins. J. Mol. Med. (Berl.). 2005; 83 (8): 587–595.

9. Nguyen T.X., Cole A.M., Lehrer R.I. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides. 2003; 24 (11): 1647–1654.

10. Frye M., Bargon J., Dauletbaev N. et al. Expression of human alpha-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J. Clin. Pathol. 2000; 53 (10): 770–773.

11. Mikkel F., Kamp S., Cowland J. B. et al. Prodefensins are matrix proteins of specific granules in human neutrophils. J. Leukoc. Biol. 2005; 78: 785–793. 12. Мавчур В.И., Левых А.Э. Дефензины – пептиды с антиинфекционными и противоопухолевыми свойствами. Болезни и антибиотики. 2012; 2 (7): 27–39. / Mavchur V.I., Levykh A.E. Defensins as peptides with anti-infection and anti-tumor properties. Bolezni i antibiotiki. 2012; 2 (7): 27–39 (in Russian).

12. Schibli D.J., Hunter H.N., Aseyev V. et al. The Solution Structures of the Human b-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus, JBC 2001; doi: 10.1074/jbc.M108830200.

13. Augustin D.K., Heimer S.R., Tam C. et al. Role of defensins in corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Infect. and Immun. 2011; 79 (2): 595–605. doi: 10.1128/IAI.00854-10.

14. Zanger P., Holzer J., Schleucher R. et al. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human betadefensin 2. Infect. and Immun. 2010; 78 (7): 3112–3117. doi: 10.1128/IAI.00078-10.

15. Hoover D.M., Rajashankar K.R., Blumenthal R. et al. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J. Biol. Chem. 2000; 275 (42): 32911–32918.

16. Bals R., Wang X., Wu Z. et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 1998; 102 (5): 874–880.

17. Maggina P., Christodoulou I., Papaevangelou V. et al. Dendritic cells in viral bronchiolitis. Expert. Rev. Clin. Immunol. 2009; 5(3): 271–282.

18. Tiszlavicz Z., Endresz V., Nemeth B. et al. Inducible expression of human b-defensin 2 by Chlamydophila pneumoniae in brain capillary endothelial cells. Innate Immun. 2011; 17 (5): 463–469. doi: 10.1177/1753425910375582.

19. Nilsson M.F., Sandstedt B., Sørensen O. et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun. 1999; 67 (5): 2561–2566.

20. Абатуров А.Е. Катионные антимикробные пептиды системы неспецифической защиты респираторного тракта: дефензины и кателицидины. Дефензины – молекулы, переживающие ренессанс. Часть 4. Здоровье ребенка. 2012; 2 (37): 154–160. / Abaturov A.E. Cationic antimicrobial peptides of respiratory non-specific defense: defensins and catelicidin. Defensins as revirescent molecules. Part 4. Zdorov'e rebenka. 2012; 2 (37): 154–160 (in Russian).

21. Kim S.K., Park S., Lee E.S. Toll-like receptors and antimicrobial peptides expressions of psoriasis: correlation with serum vitamin D level. J. Korean Med. Sci. 2010; 25 (10): 1506–1512. doi: 10.3346/jkms.2010.25.10.1506.

22. Usui T., Yoshikawa T., Orita K. et al. Changes in salivary antimicrobial peptides, immunoglobulin A and cortisol after prolonged strenuous exercise. Eur. J. Appl. Physiol. 2011; 111 (9): 2005–2014. doi: 10.1007/s00421-011-1830-6.

23. Gambichler T., Bechara F.G., Scola N. et al. Serum levels of antimicrobial peptides and proteins do not correlate with psoriasis severity and are increased after treatment with fumaric acid esters. Arch. Dermatol. Res. 2012; 304 (6): 471–474. doi: 10.1007/s00403-012-1227-3.

24. De Smet K., Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett. 2005; 27 (18): 1337–1347.

25. Эндогенные антимикробные пептиды и белки: 369. www.Biochemmack.ru. available 14.04.2013. / Endogenic antimicrobial peptides and ptroteins: 369. www.Biochemmack.ru. available 14.04.2013 (in Russian).

26. Diamond G., Kaiser V., Rhodes J. et al. Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells. Infect. end Immun. 2000; 68 (1): 113–119.

27. Qiu H.N., Wong C.K., Chu I.M.T. et al. Muramyl dipeptide mediated activation of human bronchial epithelial cells interacting with basophils: a novel mechanism of airway inflammation. Clil. Exp. Immunol. 2013; 172 (1): 81–94.

28. Mathews M., Jia H.P., Guthmiller J.M. et al. Production of b-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. end Immun. 1999; 67 (6): 2740–2745.

29. Eyerich S., Wagener J., Wenzel V. et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 2011; 41 (7): 1894–1901. doi: 10.1002/eji.201041197.

30. Guani-Guerra E., Negrete-Garcia M.C., Montes-Vizuet R. et al. Human β-defensin-2 induction in nasal mucosa after administration of bacterial lysates. Arch. Med. Res. 2011; 42 (3): 189–194. doi: 10.1016/j.arcmed.2011.04.003.

31. Deng L.X., Wu G.X., Cao Y. et al. The chromosomal protein HMGN2 mediates the LPS-induced expression of β-defensins in mice. Inflammation / 2012; 35 (2): 456–473. doi: 10.1007/s10753-011-9335-3.

32. Lan C.C., Wu C.S., Huang S.M. et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br. J. Dermatol. 2012; 166 (6): 1221–1229. doi: 10.1111/ j.1365-2133.2012.10847.x.

33. Vahavihu K., Ala-Houhala M., Peric M. et al. Narrowband ultraviolet B treatment improves vitamin D balance and alters antimicrobial peptide expression in skin lesions of psoriasis and atopic dermatitis. Br. J. Dermatol. 2010; 163 (2): 321–328. doi: 10.1111/j.1365-2133.2010.09767.x.

34. Kim Y.S., Min K.S., Lee S.I. et al. Effect of proinflammatory cytokines on the expression and regulation of human beta-defensin 2 in human dental pulp cells. J. Endod. 2010; 36 (1): 64–69. doi: 10.1016/j.joen.2009.09.022.

35. Yoon Y.M., Lee J.Y., Yoo D. et al. Bacteroides fragilis enterotoxin induces human beta-defensin-2 expression in intestinal epithelial cells via a mitogen-activated protein kinase/I kappaB kinase/NF-kappaB-dependent pathway. Infect. End Immun. 2010; 78 (5): 2024–2033. doi: 10.1128/IAI.00118-10.

36. Lee S.I., Min K.S., Bae W.J. et al. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells. J Endod 2011; 37(11): 1525–1530. doi: 10.1016/j.joen.2011.07.006.

37. Scharf S., Hippenstiel S., Flieger A. et al. Induction of human β-defensin-2 in pulmonary epithelial cells by Legionella pneumophila: involvement of TLR2 and TLR5, p38 MAPK, JNK, NF-b, and AP-1. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 298 (5): L687–695.

38. Scharf S., Zahlten J., Szymanski K. et al. Streptococcus pneumoniae induces human β-defensin-2 and -3 in human

39. lung epithelium. Exp. Lung Res. 2012; 3 8 (2): 100–110. doi: 10.3109/01902148.2011.652802.

40. Moranta D., Regueiro V., March C. et al. Klebsiella pneumoniae capsule polysaccharide impedes the expression of β-defensins by airway epithelial cells. Infect. end Immun. 2010; 78 (3): 1135–1146.

41. Routsias J.G., Karagounis P., Parvulesku G. et al. In vitro bactericidal activity of human beta-defensin 2 against nosocomial strains. Peptides. 2010; 31 (9): 1654–1660. doi: 10.1016/j.peptides.2010.06.010.

42. Tohidnezhad M., Varoga D., Wruck C.J. et al. Platelets display potent antimicrobial activity and release human betadefensin 2. Platelets. 2012; 23 (3): 217–223. doi: 10.3109/09537104.2011.610908.

43. Sinha S., Cheshenko N., Lehrer R.I. et al. NP-1, a rabbit a-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2 Antimicrob Agents Chemother. 2003; 47 (2): 494–500.

44. Chang T.Li-Y., Francois F., Mosoian A., Klotman M.E. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from a-defensin-1 HIV inhibition. J. Virol. 2003; 77 (12): 6777–6784.

45. Gregory S.M., Nazir Sh.N., Metcalf J.P. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol. 2011; 6 (3): 357–374.

46. Bissell J., Joly S., Johnson G.K. et al. Expression of betadefensins in gingival health and in periodontal disease. J. Oral Pathol. Med. 2004; 33 (5): 278–285.

47. Pereira A.L., Holzhausen M., Franco G.C. et al. Human β-defensin 2 and protease activated receptor-2 expression in patients with chronic periodontitis. Arch. Oral. Biol. 2012; 57 (12): 1609–1614. doi: 10.1016/j.archoralbio.2012.04.018.

48. Gursoy U.K., Kononen E., Luukkonen N., Uitto V.-J. Human neutrophil defensins and their effect on epithelial cells. J. Periodontol. 2013; 84 (1): 126–133.

49. Carothers D.G., Graham S.M., Jia H.P. et al. Production of β-defensin antimicrobial peptides by maxillary sinus mucosa. Am. J. Rhinol. 2001; 15 (3): 175–179.

50. Meyer J.E., Harder J., Görögh T. et al. hBD-2 gene expression in nasal mucosa. Laryngorhinootologie 2000; 79 (7): 400–403.

51. Chang A.B., Yerkovich S.T., Gibson P.G. et al. Pulmonary innate immunity in children with protracted bacterial bronchitis. J. Pediatr. 2012; 161 (4): 621–615. e1.doi: 10.1016/j.jpeds.2012.03.049.

52. Pace E., Giarratano A., Ferraro M. et al. TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum. Immunol. 2011; 72 (1): 54–62. doi: 10.1016/j.humimm.2010.09.009.

53. Liao Z., Dong J., Hu X. et al. Enhanced expression of human β-defensin 2 in peripheral lungs of patients with chronic obstructive pulmonary disease. Peptides. 2012; 38 (2): 350–356. doi: 10.1016/j.peptides.2012.09.013.

54. Zhang W., Case S., Bowler R.P. et al. Cigarette smoke modulates PGE(2) and host defense against Moraxella catarrhalis infection in human airway epithelial cells. Respirology 2011; 16 (3): 508–516. doi: 10.1111/j.1440-1843.2010.01920.x.

55. Mahanonda R., Sa-Ard-Iam N., Eksomtramate M. et al. Cigarette smoke extract modulates human beta-defensin-2 and interleukin-8 expression in human gingival epithelial cells. J. Periodontol. Res. 2009; 44 (4): 557–564. doi: 10.1111/j.1600-0765.2008.01153.x.

56. Пруткина Е.В., Сепп А.В., Цыбиков Н.Н. Анализ экспрессии альфа-дефензинов в легких при респираторном дистресс-синдроме в эксперименте. Фундаментальные исследования. 2012; 7: 385–389. / Prutkina E.V., Sepp A.V., Tsybikov N.N. An analysis of alpha-defensins expression in the lungs in a model of respiratory distresssyndrome. Fundamentalnye issledovaniya. 2012; 7: 385–389 (in Russian).

57. Oono T., Shirafuji Y., Huh W.K. et al. Effects of human neutrophil peptide-1 on the expression of interstitial collagenase and type I collagen in human dermal fibroblasts. Arch. Dermatol. Res. 2002; 294 (4): 185–189.

58. Yoshioka S., Mukae H., Ishii H. Alpha-defensin enhances expression of HSP 47 and collagen-1 in human lung fibroblasts. Life Sci. 2007; 20: 17367817.

59. Vordenbaumen S., Timm D., Bleck E. et al. Altered serum levels of human neutrophil peptides (HNP) and human beta-defensin 2 (hBD2) in Wegener's granulomatosis. Rheumatol. Int. 2011; 31 (9): 1251–1254. doi: 10.1007/s00296-010-1702-0.

60. Zhuravel E., Shestakova T., Efanova O. et al. Human betadefensin-2 controls cell cycle in malignant epithelial cells: in vitro study. Exp. Oncol. 2011; 33 (3): 114–120.

61. Kalita A., Verma I., Khuller G.K. Role of human neutrophil peptide 1 as a possible adjunct to antituberculosis. Chemotherapy J. Infect. Dis. 2004; 190: 1476–1480.

62. Gupta S., Ghosh S.K., Scott M.E. et al. Fusobacterium nucleatum-associated beta-defensin inducer (FAD-I): identification, isolation, and functional evaluation. J. Biol. Chem. 2010; 285 (47): 36523–36531. doi: 10.1074/jbc. M110.133140.

63. Hostanska K., Melzer J., Amon A., Saller R. Suppression of interleukin (IL)-8 and human beta defensin-2 secretion in LPS-and / or IL-1b-stimulated airway epithelial A549 cells by a herbal formulation against respiratory infections (BNO 1030). J. Ethnopharmacol. 2011; 134 (2): 228–233. doi: 10.1016/j.jep.2010.12.006.

64. Shen Z., Lei H. Expression of hBD-2 induced by 23-valent pneumococcal polysaccharide vaccine, Haemophilus influenzae type b vaccine and split influenza virus vaccine. Mol. Med. Rep. 2012; 6 (4): 733–738. doi: 10.3892/mmr.2012.1005.

65. Marzani B., Pinto D., Minervini F. et al. The antimicrobial peptide pheromone Plantaricin A increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, β-defensin 2 and tumor necrosis factor-a genes. Exp. Dermatol. 2012; 21 (9): 665–671. doi: 10.1111/j.1600-0625.2012.01538.x.

66. Shao Z.J., Zheng X.W., Feng T. et al. Andrographolide exerted its antimicrobial effects by upregulation of human β-defensin-2 induced through p38 MAPK and NF-kB pathway in human lung epithelial cells. Can. J. Physiol. Pharmacol. 2012; 90 (5): 647–653. doi: 10.1139/y2012-050.

67. Kase K., Hua J., Yokoi H. et al. Inhibitory action of roxithromycin on histamine release and prostaglandin D2 production from beta-defensin 2-stimulated mast cells. Int. J. Mol. Med. 2009; 23 (3): 337–340.

68. Zong Z.W., Li N., Xiao T.Y. et al. Effect of hBD2 genetically modified dermal multipotent stem cells on repair of infected irradiated wounds. J. Radiat. Res. 2010; 51 (5): 573–580.

69. Мишланов В.Ю. Сандаков П.Я., Ронзин А.В. и др. Нарушение белоксинтезирующей функции нейтрофилов и липидвысвобождающей способности лейкоцитов у больных атеросклерозом различных локализаций. Клиническая медицина 2013; 91 (12): 14–20. / Mishlanov V.Yu., Sandakov P.Ya., Ronzin A.V. et al. Disorders of protein-synthetizing function of neutrophils and lipidreleasing function of leukocytes in patients with atherosclerosis of different localizations. Klinicheskaya meditsina 2013; 91 (12): 14–20 (in Russian).

70. Hattar K., Franz K., Ludwig M. et. al. Interactions between neutrophils and NSCLC cells in vitro effects on neutrophil inflammatory mediator generation and tumour cell proliferation. J. Clin. Oncol. 2009; Suppl. Abstr.: e22148.

71. Мишланов В.Ю., Туев А.В., Шутов А.А. и др. Метод липидвысвобождающей способности лейкоцитов в диагностике механизмов атерогенеза у больных ишемической болезнью сердца и мозговым ишемическим инсультом. Клиническая лабораторная диагностика. 2006; 5: 9–12. / Mishlanov V.Yu., Tuev A.B., Shutov A.A. et al. Leukocyte lipid-releasing properties for diagnosis of atherogenesis mechanisms in patients with ischaemic heart disease and cerebral ischaemic stroke. Klinicheskaya laboratornaya diagnostika. 2006; 5: 9–12 (in Russian).

72. Мишланов В.Ю. Барламов П.Н., Морозова Н.С. Липидвысвобождающая способность лейкоцитов и некоторые показатели иммунной недостаточности у больных внебольничной пневмонией. Медицинская иммунология. 2012; 6: 555–560. / Mishlanov V.Yu., Barlamov P.N., Morozova N.S. Leukocyte lipid-releasing properties and some parameters of immune insufficiency in patients with community-acquired pneumonia. Meditsinskaya immunologiya. 2012; 6: 555–560 (in Russian).

73. Пат. РФ № 2194995 от 20.12.02. Туев А.В. Мишланов В.Ю. Способ диагностики прогрессирующей стенокардии у больных ишемической болезнью сердца. / Pat. RF N 2194995 issued on December, 20th, 2012. Tuev A.B., Mishlanov V.Yu. A Method for Diagnosis of Unstable Angina Pectoris in Patients with Ischaemic Heart Disease (in Russian).


Дополнительные файлы

Для цитирования: Мишланов В.Ю. ДЕФЕНЗИНЫ И ДРУГИЕ ПРОТИВОМИКРОБНЫЕ ПЕПТИДЫ: РОЛЬ НАРУШЕНИЙ БЕЛОКСИНТЕЗИРУЮЩЕЙ СПОСОБНОСТИ НЕЙТРОФИЛОВ В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЙ ОРГАНОВ ДЫХАНИЯ.  Пульмонология. 2014;(3):104-112. https://doi.org/10.18093/0869-0189-2014-0-3-104-112

For citation: Mishlanov V.Y. DEFENSINS AND OTHER ANTIMICROBIAL PEPTIDES AND A ROLE OF NEUTROPHIL PROTEIN-SYNTHESING FUNCTION DISORDERS FOR PATHOGENESIS OF RESPIRATORY DISEASES. Russian Pulmonology. 2014;(3):104-112. (In Russ.) https://doi.org/10.18093/0869-0189-2014-0-3-104-112

Просмотров: 377

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)