Preview

PULMONOLOGIYA

Advanced search

Cough associated with the new coronavirus infection (COVID-19): rational approaches to pharmacotherapy

https://doi.org/10.18093/0869-0189-2022-32-2-232-238

Abstract

Cough is one of the most frequent symptoms of the new coronavirus infection (COVID-19). It reduces the quality of life and contributes to the development of life-threatening conditions.

Aim. This article analyzes modern approaches to the pharmacotherapy of cough in patients with the new coronavirus infection from the standpoint of pathogenetic justification of the use of drugs. The main mechanisms of cough development in COVID-19 presented in the literature are considered. The cough is associated with virus-induced damage to the epithelium and subsequent release of biologically active substances that irritate the afferent endings of the vagus nerve. Approaches to cough management in COVID-19 with the possible use of antitussive (central and peripheral action) and mucoactive drugs (expectorants, mucokinetics, mucolytics, mucoregulators) are addressed.

Conclusion. Based on the literature data and pathogenesis, antitussive drugs play a crucial role in the treatment of cough in COVID-19.

About the Authors

S. V. Okovityi
Saint-Petersburg State Chemical and Pharmaceutical University, Healthcare Ministry of the Russian Federation
Russian Federation

Sergey V. Okovityi, Doctor of Medicine, Professor, Head of the Department of Pharmacology and Clinical Pharmacology

ul. Prof. Popova 14а, Saint-Petersburg, 197022, Russia



D. S. Sukhanov
Saint-Petersburg State Budgetary Healthcare Institution “Tuberculosis Dispensary No.12”
Russian Federation

Dmitry S. Sukhanov, Doctor of Medicine, pulmonologist

nab. reki Fontanki 152а, Saint-Petersburg, 190103, Russia



A. A. Zaicev
Main Military Clinical Hospital named after academician N.N.Burdenko, Ministry of Defense of the Russian Federation
Russian Federation

Andrey A. Zaicev, Doctor of Medicine, Professor, Chief Pulmonologist

SPIN: 6549-5154;
Author ID: 217005

Gospital’naya pl. 3, Moscow, 105229, Russia

 



References

1. Zaytsev A.A., Chernov S.A., Kryukov E.V. et al. [Practical experience of managing patients with new coronavirus infection COVID-19 in hospital (preliminary results and guidelines)]. Lechashchiy Vrach. 2020; (6): 74–79. DOI: 10.26295/OS.2020.41.94.014 (in Russian).

2. National Institute for Health and Care Excellence (NICE) in collaboration with NHS England and NHS Improvement [corporate author]. Managing COVID-19 symptoms (including at the end of life) in the community: summary of NICE guidelines. BMJ. 2020; 369: m1461. DOI: 10.1136/bmj.m1461.

3. Lovato A., Filippis C. Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020; 99 (9): 569–576. DOI: 10.1177/0145561320920762.

4. Zaytsev A.A., Okovityy S.V., Miroshnichenko N.A., Kryukov E.V. [Cough: Guidelines for physicians]. Moscow: Burdenko General Clinical Hospital; 2021. Available at: https://www.researchgate.net/publication/354162540_Kasel_Metodiceskie_rekomendacii_dla_vracej_Cough_Guidelines_for_physicians (in Russian).

5. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond.). 2021; 53 (10): 737–754. DOI: 10.1080/23744235.2021.1924397.

6. Tsinzerling V.A., Vashukova M.A., Vasil’eva M.V. [Issues of pathology of a new coronavirus infection CoVID-19.]. Zhurnal infektologii. 2020; 12 (2): 5–11. DOI: 10.22625/2072-6732-2020-12-2-5-11 (in Russian).

7. Zaccone E.J., Lieu T., Muroi Y. et al. Parainfluenza 3 – induced cough hypersensitivity in the guinea pig airways. PLoS One. 2016; 11 5): e0155526. DOI: 10.1371/journal.pone.0155526.

8. Deng Z., Zhou W., Sun J. et al. IFN-γ enhances the cough refl x sensitivity via calcium infl in vagal sensory neurons. Am. J. Respir. Crit. Care Med. 2018; 198 (7): 868–879. DOI: 10.1164/rccm.201709-1813OC.

9. Patil M.J., Ru F., Sun H. et al. Acute activation of bronchopulmonary vagal nociceptors by type I interferons. J. Physiol. 2020; 598 (23): 5541–5554. DOI: 10.1113/JP280276.

10. Chung K.F., Pavord I.D. Prevalence, pathogenesis, and causes of chronic cough. Lancet. 2008; 371 (9621): 1364–1374. DOI: 10.1016/S0140-6736(08)60595-4.

11. Scialo F., Daniele A., Amato F. et al. ACE2: The major cell entry receptor for SARS-CoV-2. Lung. 2020; 198 (6): 867–877. DOI: 10.1007/s00408-020-00408-4.

12. Abaturov A.E., Agafonova E.A., Krivusha E.L., Nikulina A.A. [Pathogenesis of COVID-19]. Zdorov’e rebenka. 2020; 15 (2): 133– 144. DOI: 10.22141/2224-0551.15.2.2020.200598 (in Russian).

13. Dalan R., Bornstein S.R., El-Armouche A. et al. The ACE-2 in COVID-19: Foe or friend? Horm. Metab. Res. 2020; 52 (5): 257–263. DOI: 10.1055/a-1155-0501.

14. Colarusso C., Terlizzi M., Pinto A., Sorrentino R. A lesson from a saboteur: High-MW kininogen impact in coronavirus-induced disease 2019. Br. J. Pharmacol. 2020; 177 (21): 4866–4872. DOI: 10.1111/bph.15154.

15. Hewitt M.M., Adams G.Jr., Mazzone S.B. et al. Pharmacology of bradykinin-evoked coughing in guinea pigs. J. Pharmacol. Exp. Ther. 2016; 357 (3): 620–628. DOI: 10.1124/jpet.115.230383.

16. Garvin M.R., Alvarez C., Miller J.I. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020; 9: e59177. DOI: 10.7554/eLife.59177.

17. Roche J.A., Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020; 34 (6): 7265–7269. DOI: 10.1096/fj.202000967.

18. van de Veerdonk F.L., Kouijzer I.J.E., de Nooijer A.H. et al. Outcomes associated with use of a kinin B2 receptor antagonist among patients with COVID-19. JAMA Netw. Open. 2020; 3 (8): e2017708. DOI: 10.1001/jamanetworkopen.2020.17708.

19. van de Veerdonk F.L., Netea M.G., van Deuren M. et al. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020; 9: e57555. DOI: 10.7554/eLife.57555.

20. Dicpinigaitis P.V., Canning B.J. Is there (will there be) a postCOVID-19 chronic cough? Lung. 2020; 198 (6): 863–865. DOI: 10.1007/s00408-020-00406-6.

21. Zaytsev A.A.. [Cough: problems and solutions]. Prakticheskaya pul’monologiya. 2020; (2): 78–86. Available at: https://atmosphere­ph.ru/modules/Magazines/articles//pulmo/pp_2_2020_78.pdf (in Russian).

22. Undem B.J., Chuaychoo B., Lee M.G. et al. Subtypes of vagal afferent C-fi in guinea-pig lungs. J. Physiol. 2004; 556 (Pt 3): 905–917. DOI: 10.1113/jphysiol.2003.060079.

23. Chou Y.L., Scarupa M.D., Mori N., Canning B.J. Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008; 295 (5): R1572–1584. DOI: 10.1152/ajpregu.90382.2008.

24. Chou Y.L., Mori N., Canning B.J. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018; 314 (3): R489–498. DOI: 10.1152/ajpregu.00313.2017.

25. Tatar M., Sant’Ambrogio G., Sant’Ambrogio F.B. Laryngeal and tracheobronchial cough in anesthetized dogs. J. Appl. Physiol. (1985). 1994; 76 (6): 2672–2679. DOI: 10.1152/jappl.1994.76.6.2672.

26. Tatar M., Webber S.E., Widdicombe J.G. Lung C-fi receptor activation and defensive reflexes in anaesthetized cats. J. Physiol. 1988; 402: 411–420. DOI: 10.1113/jphysiol.1988.sp017212.

27. Stone R.A., Worsdell Y.M., Fuller R.W., Barnes P.J. Effects of 5-hydroxytryptamine and 5-hydroxytryptophan infusion on the human cough reflex. J. Appl. Physiol. (1985). 1993; 74 (1): 396–401. DOI: 10.1152/jappl.1993.74.1.396.

28. Okovityy S.V., Zaytsev A.A., Anisimova N.A. [Pharmacodynamic approaches to the use of mucoactive drugs]. Lechashchiy vrach. 2020; (10): 6–10. DOI: 10.26295/OS.2020.62.62.001 (in Russian).

29. Morice A., Kardos P. Comprehensive evidence-based review on European antitussives. BMJ Open Respir. Res. 2016; 3 (1): e000137. DOI: 10.1136/bmjresp-2016-000137.

30. Bem J.L., Peck R. Dextromethorphan: An overview of safety issues. Drug Saf. 1992; 7 (3): 190–199. DOI: 10.2165/00002018-199207030-00004.

31. Lauterbach E.C. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Med. Hypotheses. 2012; 78 (6): 693–702. DOI: 10.1016/j.mehy.2012.02.012.

32. Matthys H., Bleicher B., Bleicher U. Dextromethorphan and codeine: objective assessment of antitussive activity in patients with chronic cough. J. Int. Med. Res. 1983; 11 (2): 92–100. DOI: 10.1177/030006058301100206.

33. Werling L.L., Lauterbach E.C., Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist. 2007; 13 (5): 272–293. DOI: 10.1097/NRL.0b013e3180f60bd8.

34. Gordon D.E., Jang G.M., Bouhaddou M. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583 (7816): 459–468. DOI: 10.1038/s41586-020-2286-9.

35. CHPA statement regarding use of dextromethorphan and COVID-19. CHPA. May 6, 2020. Available at: https://www.chpa.org/news/2020/05/chpa-statement-regarding-use-dextromethorphan-and-covid-19 [Accessed: December 29, 2020].

36. Enkirch T., Sauber S., Anderson D.E. et al. Identification and in vivo efficacy assessment of approved orally bioavailable human host protein-targeting drugs with broad anti-influenza A activity. Front. Immunol. 2019; 10: 1097. DOI: 10.3389/fimmu.2019.01097.

37. Sarkar I., Sen A. In silico screening predicts common cold drug Dextromethorphan along with Prednisolone and Dexamethasone can be eff ive against novel coronavirus disease (COVID-19). J. Biomol. Struct. Dyn. [Preprint. Posted: 2020, Nov. 23]. DOI: 10.1080/07391102.2020.1850528.

38. Klein M., Musacchio J.M. High affinity dextromethorphan binding sites in guinea pig brain: Effect of sigma ligands and other agents. J. Pharmacol. Exp. Ther. 1989; 251 (1): 207–215. Available at: https://jpet.aspetjournals.org/content/251/1/207

39. Plusa T. [Butamirate citrate in control of cough in respiratory tract infl tion]. Pol. Merkur. Lekarski. 2017; 43 (254): 69–74 (in Polish).

40. Faruqi S., Wright C., Thompson R., Morice A.H. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers. Br. J. Clin. Pharmacol. 2014; 78 (6): 1272–1280. DOI: 10.1111/bcp.12458.

41. Geppe N.A., Kondyurina E.G., Galustyan A.N. et al. [Rengalin, a novel drug for treatment of cough in children: Intermediate data on multicentre, comparative randomized clinical trial]. Antibiotiki i khimioterapiya. 2014; 59 (7–8): 16–24. Available at: https://www.antibiotics­chemotherapy.ru/jour/article/view/555/555 (in Russian).

42. Tsyganko D.V., Berdnikova N.G., Ekaterinchev V.A. [Clinical and pharmacological approaches to optimizing therapy in a coughing patient]. Medicinskiy sovet. 2021; (4): 112–119. DOI: 10.21518/2079-701X-2021-4-112-119 (in Russian).

43. Harsanyi K., Tardos L., Feher I., Nagy G. Pharmacologic, clinico-pharmacologic and clinical effects of Libexin. Boll. Chim. Farm. 1973; 112 (10): 691–699.

44. Lavezzo A., Melillo G., Clavenna G., Omini C. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides. Pulm. Pharmacol. 1992; 5 (2): 143–147. DOI: 10.1016/0952-0600(92)90033-d.

45. Shams H., Daffonchio L., Scheid P. Effects of levodropropizine on vagal afferent C-fibres in the cat. Br. J. Pharmacol. 1996; 117 (5): 853–858. DOI: 10.1111/j.1476-5381.1996.tb15271.x.

46. Gunella G., Zanasi A., Massimo Vanasia C.B. [Efficacy and safety of the use of levodropropizine in patients with chronic interstitial lung diseases]. Clin. Ter. 1991; 136 (4): 261–266 (in Italian).

47. Bruschi C., Crotti P., Dacosto E. et al. Levodropropizine does not affect P0.1 and breathing pattern in healthy volunteers and patients with chronic respiratory impairment. Pulm. Pharmacol. Ther. 2003; 16 (4): 231–236. DOI: 10.1016/S1094-5539(03)00053-1.

48. Mannini C., Lavorini F., Zanasi A. et al. A randomized clinical trial comparing the effects of antitussive agents on respiratory center output in patients with chronic cough. Chest. 2017; 151 (6): 1288–1294. DOI: 10.1016/j.chest.2017.02.001.

49. Nosalova G., Kardosova A, Franova S. Antitussive activity of a glucuronoxylan from Rudbeckia fulgida compared to the potency of two polysaccharide complexes from the same herb. Pharmazie. 2000; 55 (1): 65–68.

50. Catena E., Daff chio L. Effi acy and tolerability of levodropropizine in adult patients with non-productive cough. Comparison with dextromethorphan. Pulm. Pharmacol. Ther. 1997; 10 (2): 89–96. DOI: 10.1006/pupt.1997.0083.

51. Luporini G., Barni S., Marchi E., Daffonchio L. Efficacy and safety of levodropropizine and dihydrocodeine on nonproductive cough in primary and metastatic lung cancer. Eur. Respir. J. 1998; 12 (1): 97–101. DOI: 10.1183/09031936.98.12010097.

52. Zatolochina K.E., Zyryanov S.K., Ushkalova E.A. [The role of levodropropizine in cough therapy]. Pediatriya. Zhurnal im. G.N.Sper­ anskogo. 2020; 99 (5): 125–132. DOI: 10.24110/0031-403X-2020-99-5-125-132 (in Russian).

53. Zanasi A., Lanata L., Fontana G. et al. Levodropropizine for treating cough in adult and children: a meta-analysis of published studies. Multidiscip. Respir. Med. 2015; 10 (1): 19. DOI: 10.1186/s40248-015-0014-3.


Review

For citations:


Okovityi S.V., Sukhanov D.S., Zaicev A.A. Cough associated with the new coronavirus infection (COVID-19): rational approaches to pharmacotherapy. PULMONOLOGIYA. 2022;32(2):232-238. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-2-232-238

Views: 1345


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)