Lipopolysaccharide-binding protein and presepsin in patients with SARS-CoV-2 viral lung disease in the Republic of Crimea
https://doi.org/10.18093/0869-0189-2022-32-2-162-170
Abstract
Although more than 2 years have passed since the beginning of the pandemic of the new coronavirus infection, treatment and prediction of the course of SARS-CoV-2 infection remain pressing global problems. In this regard, the search for additional links in the pathogenesis of SARS-CoV-2 is currently one of the most important tasks.
The Aim. To assess the level of lipopolysaccharide-binding protein (LBP) and presepsin (sCD14-ST) in patients with SARS-CoV-2 viral lung disease in Crimea.
Methods. We examined 121 patients with a positive PCR result for SARS-CoV-2 in the age group of 45 – 75 years who were hospitalized in the Department of Infectious Diseases, State Budgetary Healthcare Institution of the Republic of Crimea “N.A.Semashko Republican Clinical Hospital”. Patients were divided into 3 clinical groups according to the severity of SARS-CoV-2 infection: Group 1 – patients with moderate disease, Group 2 – patients with severe disease, and Group 3 – patients with fatal outcome. Peripheral blood levels of LBP, presepsin, ferritin, and C-reactive protein were determined upon admission to the infectious disease hospital.
Results. A significant increase in all studied parameters was observed in the 1st, 2nd and 3rd clinical groups of patients with coronavirus infection. This finding corresponds to the state of lipopolysaccharide-binding systems and systemic infection in patients with SARS-CoV-2 viral lung disease. The highest levels of LBP, sCD14-ST, and ferritin were registered in the 3rd clinical group. We found a direct correlation between LBP and sCD14-ST levels in the 2nd group (r = 0.523, p < 0.05) and the 3rd group (r = 0.748, p < 0.05).
Conclusion. Patients with SARS-CoV-2 lung disease were found to have an increased blood levels of LBP and presepsin upon admission. The highest values were observed in patients with fatal outcome. Severe SARSCoV-2 lung damage was associated with a direct correlation between levels of LBP and sCD14-ST. Presepsin, LBP, and ferritin are important prognostic markers for severe SARS-CoV-2 lung damage and risk of death in the early stages of hospital treatment.
About the Authors
I. A. YatskovRussian Federation
Igor A. Yatskov, Assistant, Department of Internal Medicine No.2
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
V. A. Beloglazov
Russian Federation
Vladimir A. Beloglazov, Doctor of Medicine, Head of the Department of Internal Medicine No.2
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
A. V. Kubyshkin
Russian Federation
Anatoly V. Kubyshkin, Doctor of Medicine, Head of the Department of General and Clinical Pathophysiology
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
A. P. Nikolaeva
Russian Federation
Anna P. Nikolaeva, Doctor of Medicine, Professor, Department of Internal Medicine No.2
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
E. Yu. Zyablitskaya
Russian Federation
Evgeniya Yu. Zyablitskaya, Doctor of Medicine, Leading Researcher, Central Research Laboratory
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
Ju. E. Kunitskaya
Russian Federation
Julia E. Kunitskaya, Junior Researcher, Central Research Laboratory
Prosp. Akademika Vernadskogo 4, Crimea Republic, Simferopol, 295007, Russia
E. N. Lavrenchu
Russian Federation
Elzara N. Lavrenchuk, Head оf Infectious Diseases Departmen
Kievskaya ul. 69, Crimea Republic, Simferopol, 295017, Russia
References
1. Worldmeter. COVID-19 coronavirus pandemic. Last updated: August 07, 2021, 21:37 GMT. Available at: https://www.worldometers.info/coronavirus/ [Accessed: August 07, 2021].
2. Tang D., Comish P., Kang R. The hallmarks of COVID-19 disease. PLoS Pathog. 2020; 16 (5): e1008536. DOI: 10.1371/journal.ppat.1008536.
3. Gupta A., Madhavan M.V., Sehgal K. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020; 26 (7): 1017–1032. DOI: 10.1038/s41591-020-0968-3.
4. Tong M., Jiang Y., Xia D. et al. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. J. Infect. Dis. 2020; 222 (6): 894–898. DOI: 10.1093/infdis/jiaa349.
5. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368 (6490): 473–474. DOI: 10.1126/science.abb8925.
6. Grylls A., Seidler K., Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother. 2021; 137: 111334. DOI: 10.1016/j.biopha.2021.111334.
7. Cañadas O., Keough K.M., Casals C. Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films. Biophys J. 2011; 100 (1): 108–116. DOI: 10.1016/j.bpj.2010.11.028.
8. Wang C., Xu J., Yang L. et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018; 391 (10131): 1706–1717. DOI: 10.1016/S0140-6736(18)30841-9.
9. Konev Yu.V. [The role of endotoxin (LPS) in the pathogenesis of metabolic syndrome and atherosclerosis]. Eksperimental’naya i klinicheskaya gastroenterologiya. 2012; (11): 11–22. Available at: https://cyberleninka.ru/article/n/rol-endotoksina-lps-v-patogeneze-metabolicheskogo-sindroma-i-ateroskleroza? (in Russian).
10. Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008; 42 (2): 145–151. DOI: 10.1016/j.cyto.2008.01.006.
11. Petruk G., Puthia M., Petrlova J. et al. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J. Mol. Cell Biol. 2020; 12 (12): 916–932. DOI: 10.1093/jmcb/mjaa067.
12. Gordienko A.I., Beloglazov V.A., Kubyshkin A.V. et al. Humoral anti-endotoxin immunity imbalance as a probable factor in the pathogenesis of autoimmune diseases. Hum. Physiol. 2019; 45 (3): 337–341. DOI: 10.1134/S036211971903006X.
13. Pokusaeva D.P., Anikhovskaya I.A., Korobkova L.A. et al. [Prognostic significance of indicators of systemic endotoxinemia in atherogenesis]. Fiziologiya cheloveka. 2019; 45 (5): 543–551. DOI: 10.1134/S0131164619050138 (in Russian).
14. Yakovlev M.Y. [The role of intestinal microflora and insufficiency of the liver barrier function in the development of endotoxinemia and infl Kazanskiy medicinskiy zhurnal. 1988; 69 (5): 353–358. DOI: 10.17816/kazmj98450 (in Russian).
15. Schumann R.R., Leong S.R., Flaggs G.W. et al. Structure and function of lipopolysaccharide binding protein. Science. 1990; 249 (4975): 1429–1431. DOI: 10.1126/science.2402637.
16. Leung W.K., To K.F., Chan P.K. et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003; 125 (4): 1011–1017. DOI: 10.1016/s0016-5085(03)01215-0.
17. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020; 5 (5): 434–435. DOI: 10.1016/s2468-1253(20)30083-2.
18. Zuo T., Zhang F., Lui G.C.Y. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. DOI: 10.1053/j.gastro.2020.05.048.
19. Hoel H., Heggelund L., Reikvam D.H. et al. Elevated markers of gut leakage and inflammasome activation in COVID-19 patients with cardiac involvement. J. Intern. Med. 2021; 289 (4): 523–531. DOI: 10.1111/joim.13178.
20. da Silva Correia J., Soldau K., Christen U. et al. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 2001; 276 (24): 21129–21135. DOI: 10.1074/jbc.M009164200.
21. Landmann R., Zimmerli W., Sansano S. et al. Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J. Infect. Dis. 1995; 171 (3): 639–644. DOI: 10.1093/infdis/171.3.639.
22. Triplette M., Sigel K.M., Morris A. et al. Emphysema and soluble CD14 are associated with pulmonary nodules in HIV-infected patients: implications for lung cancer screening. AIDS. 2017; 31 (12): 1715–1720. DOI: 10.1097/QAD.0000000000001529.
23. Tan Y., Kagan J.C. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol. Cell. 2014; 54 (2): 212–223. DOI: 10.1016/j.molcel.2014.03.012.
24. Shirakawa K., Naitou K., Hirose J. et al. Presepsin (sCD14-ST): development and evaluation of one-step ELISA with a new standard that is similar to the form of presepsin in septic patients. Clin. Chem. Lab. Med. 2011; 49 (5): 937–939. DOI: 10.1515/CCLM.2011.145.
25. Mussap M., Noto A., Fravega M., Fanos V. Soluble CD14 subtype presepsin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J. Matern. Fetal Neonatal Med. 2011; 24 (Suppl. 2): 12–14. DOI: 10.3109/14767058.2011.601923.
26. Wright S.D., Ramos R.A., Tobias P.S. et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990; 249 (4975): 1431–1433. DOI: 10.1126/science.1698311.
27. Zaninotto M., Mion M.M., Cosma C. et al. Presepsin in risk stratification of SARS-CoV-2 patients. Clin. Chim. Acta. 2020; 507: 161–163. DOI: 10.1016/j.cca.2020.04.020.
28. Bowman E.R., Cameron C.M.A., Avery A. et al. Levels of soluble CD14 and tumor necrosis factor receptors 1 and 2 may be predictive of death in severe coronavirus disease 2019. J. Infect. Dis. 2021; 223 (5): 805–810. DOI: 10.1093/infdis/jiaa744.
29. Kocyigit A., Sogut O., Durmus E. et al. Circulating furin, IL-6, and presepsin levels and disease severity in SARS-CoV-2-infected patients. Sci. Prog. 2021; 104 (2, Suppl.): 368504211026119. DOI: 10.1177/00368504211026119.
30. Lloyd-Jones K.L., Kelly M.M., Kubes P. Varying importance of soluble and membrane CD14 in endothelial detection of lipopolysaccharide. J. Immunol. 2008; 181 (2): 1446–1453. DOI: 10.4049/jimmunol.181.2.1446.
31. Dunzendorfer S., Lee H.K., Soldau K., Tobias P.S. TLR4 is the signaling but not the lipopolysaccharide uptake receptor. J. Immunol. 2004; 173 (2): 1166–1170. DOI: 10.4049/jimmunol.173.2.1166.
32. Morikawa A., Koide N., Kato Y. et al. Augmentation of nitric oxide production by gamma interferon in a mouse vascular endothelial cell line and its modulation by tumor necrosis factor alpha and lipopolysac-charide. Infect. Immun. 2000; 68 (11): 6209–6214 DOI: 10.1128/IAI.68.11.6209-6214.2000.
33. Yuan S.Y. Protein kinase signaling in the modulation of microvascular permeability. Vascul. Pharmacol. 2002; 39 (4–5): 213–223. DOI: 10.1016/s1537-1891(03)00010-7.
34. Ulbrich H., Eriksson E.E., Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in infl tory disease. Trends Pharmacol. Sci. 2003; 24 (12): 640–647. DOI: 10.1016/j.tips.2003.10.004.
35. Pawlinski R., Mackman N. Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit. Care Med. 2004; 32 (5, Suppl.): S293–297. DOI: 10.1097/01.ccm.0000128445.95144.b8.
36. Brenchley J.M., Douek D.C. Microbial translocation across the GI tract. Annu. Rev. Immunol. 2012; 30: 149–173. DOI: 10.1146/annurev-immunol-020711-075001.
37. Dahan S., Segal G., Katz I. et al. Ferritin as a marker of severity in COVID-19 patients: a fatal correlation. Isr. Med. Assoc. J. 2020; 22 (8): 494–500. Available at: https://www.researchgate.net/publication/343770457_Ferritin_as_a_Marker_of_Severity_in_COVID-19_Patients_A_Fatal_Correlation [Accessed: August 12, 2021].
38. Park E., Chung S.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019; 10 (11): 822. DOI: 10.1038/s41419-019-2064-5.
39. Zanoni I., Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front. Cell. Infect. Microbiol. 2013; 3: 32. DOI: 10.3389/fcimb.2013.00032.
40. Qin K., Ma S., Li H. et al. GRP78 impairs production of lipopolysaccharide-induced cytokines by interaction with CD14. Front. Immunol. 2017; 8: 579. DOI: 10.3389/fimmu.2017.00579.
Review
For citations:
Yatskov I.A., Beloglazov V.A., Kubyshkin A.V., Nikolaeva A.P., Zyablitskaya E.Yu., Kunitskaya J.E., Lavrenchu E.N. Lipopolysaccharide-binding protein and presepsin in patients with SARS-CoV-2 viral lung disease in the Republic of Crimea. PULMONOLOGIYA. 2022;32(2):162-170. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-2-162-170