https://doi.org/10.18093/0869-0189-2012-0-2-34-39
About the Authors
M. V. VershininaRussian Federation
G. I. Nechaeva
Russian Federation
L. M. Grinberg
Russian Federation
S. E. Govorova
Russian Federation
References
1. Gooptu B., Ekeowa U.I., Lomas D.A. Source Mechanisms of emphysema in alpha1-antitrypsin deficiency: molecular and cellular insights. Eur. Respir. J. 2009; 34 (2): 475–488.
2. Mostafavi S., Lieberman J. Intermediate alpha1-antitrypsin deficiency with apical lung bullae and spontaneous pneumothorax. Presence of a Z variant in an american black. Chest 1991; 99 (6): 1545–1546.
3. De Paepe A., Devereux R.B., Deitz H.C. et al. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 1996; 62: 417–426.
4. Кадурина Т.И., Горбунова В.Н. Дисплазия соединительной ткани. Руководство для врачей. СПб.: Элби-СПб; 2009.
5. Wallace A.M., Sandford A.J., English J.C. et al. Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema. COPD 2008; 5 (1): 13–23.
6. Abolnik I. Z., Lossos I. S., Zlotogora J., Brauer R. On the inheritance of primary spontaneous pneumothorax. Am. J. Med. Genet. 1991; 40: 155–158.
7. Gunji Y., Akiyoshi T., Sato T. et al. Mutations of the Birt-Hogg-Dube gene in patients with multiple lung cysts and recurrent pneumothorax. J. Med. Genet. 2007; 44: 588–593.
8. Painter J. N., Tapanainen H., Somer M. et al. A 4-bp deletion in the Birt-Hogg-Dube gene (FLCN) causes dominantly inherited spontaneous pneumothorax. Am. J. Hum. Genet. 2005; 76: 522–527.
9. Lin Y.C., Chiu W.K., Chang H. et al. Spontaneous pneumothorax in flight as first manifestation of alpha-1 antitrypsin deficiency. Aviat. Space Environ. Med. 2008; 79 (7): 704–706.
10. Bense L., Lewander R., Eklund G. et al. Nonsmoking, nonalpha1-antitrypsin deficiency-induced emphysema in nonsmokers with healed spontaneous pneumothorax, identified by computed tomography of the lungs. Chest 1993; 103 (2): 433–438.
11. Высоцкий А.Г. Состояние антипротеазной системы крови у больных с буллезной эмфиземой легких и спонтанным пневмотораксом. Питання експер. клін. мед. 2004; 2 (8): 241–245.
12. Xu J., Xu F., Wang R. et al. Cigarette smoke-induced hypercapnic emphysema in C3H mice is associated with increases of macrophage metalloelastase and substance P in the lungs. Exp. Lung Res. 2007; 33 (5): 197–215.
13. Belvisi M.G., Bottomley K.M. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm. Res. 2003; 52: 95–100.
14. Корытина Г.Ф., Ахмадишина Л.З., Янбаева Д.Г. и др. Ассоциация полиморфных вариантов генов ферментов матриксных металлопротеаз и антипротеаз с развитием и тяжестью течения хронической обструктивной болезни легких. Пульмонология 2008; 1: 33–38.
15. Atkinson J.J., Lutey B.A., Suzuki Y. et al. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. Am. J. Respir. Crit. Care Med. 2011; 183 (7): 876–884.
Review
For citations:
Vershinina M.V., Nechaeva G.I., Grinberg L.M., Govorova S.E. . PULMONOLOGIYA. 2012;(2):34-39. (In Russ.) https://doi.org/10.18093/0869-0189-2012-0-2-34-39