1. Rodrigo-Muñoz J.M., Sastre B., Cañas J.A. et al. Eosinophil response against classical and emerging respiratory viruses: COVID-19. J. Investig. Allergol. Clin. Immunol. 2021; 31 (2): 94-107. https://doi.org/10.18176/jiaci.0624.
2. Mycroft K., Krenke R., Górska K. Eosinophils in COPD-current concepts and clinical implications. J. Allergy Clin. Immunol. Pract. 2020; 8 (8): 2565-2574. https://doi.org/10.1016/j.jaip.2020.03.017.
3. Авдеев С.Н., Айсанов З.Р., Архипов В.В. и др. Ингаляционные глюкокортикостероиды в лечении хронической обструктивной болезни легких. Пульмонология. 2020; 30 (3): 330-343. https://doi.org/10.18093/0869-0189-2020-30-3-330-343.
4. Huang W.C., Chen C.Y., Liao W.C. et al. A real-world study to assess the effectiveness of switching to once daily closed triple therapy from mono/dual combination or open triple therapy in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 1555-1568. https://doi.org/10.2147/COPD.S308911.
5. Авдеев С.Н., Трушенко Н.В., Мержоева З.М. и др. Эозинофильное воспаление при хронической обструктивной болезни легких. Терапевтический архив. 2019; 91 (10): 144-152. https://doi.org/10.26442/00403660.2019.10.000426.
6. Casanova C., Celli B.R., de-Torres J.P. et al. Prevalence of persistent blood eosinophilia: relation to outcomes in patients with COPD. Eur. Respir. J. 2017; 50 (5): 1701162. https://doi.org/10.1183/13993003.01162-2017.
7. Singh D., Kolsum U., Brightling C.E. et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur. Respir. J. 2014; 44 (6): 1697-1700. https://doi.org/10.1183/09031936.00162414.
8. Landis S., Suruki R., Maskell J. et al. Demographic and clinical characteristics of COPD patients at different blood eosinophil levels in the UK Clinical Practice Research Datalink. COPD. 2018; 15 (2): 177-184. https://doi.org/10.1080/15412555.2018.1441275.
9. Hasegawa K., Camargo C.A.Jr. Prevalence of blood eosinophilia in hospitalized patients with acute exacerbation of COPD. Respirology. 2016; 21 (4): 761-764. https://doi.org/10.1111/resp.12724.
10. Zhang Y., Liang L.R., Zhang S. et al. Blood eosinophilia and its stability in hospitalized COPD exacerbations are associated with lower risk of all-cause mortality. Int. J. Chron. Obstruct. Pulmon. Dis. 2020; 15: 1123-1134. https://doi.org/10.2147/COPD.S245056.
11. Zheng D.L., Wang H.M., Liu Y.C. et al. [The distribution of blood eosinophils and the related clinical characteristics in chronic obCOPD patients]. Zhonghua Jie He He Hu Xi Za Zhi. 2021; 44 (3): 218-224. https://doi.org/10.3760/cma.j.cn112147-20200617-00715 (in Chinese).
12. Vogelmeier C.F., Kostikas K., Fang J. et al. Evaluation of exacerbations and blood eosinophils in UK and US COPD populations. Respir. Res. 2019; 20 (1): 178. https://doi.org/10.1186/s12931-019-1130-y.
13. Citgez E., van der Palen J., van der Valk P. et al. Stability in eosinophil categorisation during subsequent severe exacerbations of COPD. BMJ Open Respir. Res. 2021; 8 (1): e000960. https://doi.org/10.1136/bmjresp-2021-000960.
14. Kostikas K., Papathanasiou E., Papaioannou A.I. et al. Blood eosinophils as predictor of outcomes in patients hospitalized for COPD exacerbations: a prospective observational study. Biomarkers. 2021; 26 (4): 354-362. https://doi.org/10.1080/1354750X.2021.1903998.
15. Zeng Q., Wang H., Wang K. et al. Eosinophilic phenotype was associated with better early clinical remission in elderly patients but not middle-aged patients with acute exacerbations of COPD. Int. J. Clin. Pract. 2021; 75 (9): e14415. https://doi.org/10.1111/ijcp.14415.
16. Peng J., Yu Q., Fan S. et al. High blood eosinophil and YKL-40 levels, as well as low CXCL9 levels, are associated with increased readmission in patients with acute exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 795-806. https://doi.org/10.2147/COPD.S294968.
17. Oshagbemi O.A., Franssen F.M.E., Braeken D.C.W. et al. Blood eosinophilia, use of inhaled corticosteroids, and risk of COPD exacerbations and mortality. Pharmacoepidemiol. Drug Saf. 2018; 27 (11): 1191-1199. https://doi.org/10.1002/pds.4655.
18. Park H.Y., Chang Y., Kang D. et al. Blood eosinophil counts and the development of obstructive lung disease: the kangbuk samsung health study. Eur. Respir. J. 2021; 58 (4): 2003823. https://doi.org/10.1183/13993003.03823-2020.
19. Nielsen A.O., Hilberg O., Jensen J.U.S. et al. Withdrawal of inhaled corticosteroids in patients with COPD - a prospective observational study. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 807-815. https://doi.org/10.2147/COPD.S294217.
20. Steer J., Gibson J., Bourke S.C. et al. The DECAF Score: predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax. 2012; 67 (11): 970-976. https://doi.org/10.1136/thoraxjnl-2012-202103.
21. Rahimi-Rad M.H., Asgari B., Hosseinzadeh N., Eishi A. Eosinopenia as a marker of outcome in acute exacerbations of chronic obstructive pulmonary disease. Maedica (Bucur). 2015; 10 (1): 1-13.
22. Kerkhof M., Chaudhry I., Pavord I.D. et al. Blood eosinophil count predicts treatment failure and hospital readmission for COPD. ERJ Open Res. 2020; 6 (4): 00188-02020. https://doi.org/10.1183/23120541.00188-2020.
23. Cui Y., Zhan Z., Zeng Z. et al. Blood eosinophils and clinical outcomes in patients with acute exacerbation of chronic obstructive pulmonary disease: a propensity score matching analysis of real-world data in China. Front. Med. (Lausanne). 2021; 8: 653777. https://doi.org/10.3389/fmed.2021.653777.
24. Prudente R., Ferrari R., Mesquita C.B. et al. Peripheral blood eosinophils and nine years mortality in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 979-985. https://doi.org/10.2147/COPD.S265275.
25. Karauda T., Kornicki K., Jarri A. et al. Eosinopenia and neutrophil-to-lymphocyte count ratio as prognostic factors in exacerbation of COPD. Sci. Rep. 2021; 11 (1): 4804. https://doi.org/10.1038/s41598-021-84439-8.
26. Helm W.H., Heyworth F. Bronchial asthma and chronic bronchitis treated with hydrocortisone acetate inhalations. Br. Med. J. 1958; 2 (5099): 765-768. https://doi.org/10.1136/bmj.2.5099.765.
27. Авдеев С.Н., Айсанов З.Р., Белевский А.С. и др. Перспективы фармакотерапии ХОБЛ: возможности комбинированных бронходилататоров и место ингаляционных глюкокортикостероидов. Заключение Совета экспертов. Пульмонология. 2016; 26 (1): 65-72. https://doi.org/10.18093/0869-0189-2016-26-1-65-72.
28. Овчаренко С.И., Визель А.А., Гамова И.В. и др. Место фиксированной комбинации будесонид / формотерол в лечении хронической обструктивной болезни легких стабильного течения. Заключение совета экспертов Приволжского федерального округа Российской Федерации. Пульмонология. 2017; 27 (1): 114-121. https://doi.org/10.18093/0869-0189-2017-27-1-114-121.
29. Park H.Y., Lee H., Koh W.J. et al. Association of blood eosinophils and plasma periostin with FEV1 response after 3-month inhaled corticosteroid and long-acting beta2-agonist treatment in stable COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2015; 11: 23-30. https://doi.org/10.2147/copd.s94797.
30. Serafino-Agrusa L., Scichilone N., Spatafora M., Battaglia S. Blood eosinophils and treatment response in hospitalized exacerbations of chronic obstructive pulmonary disease: a case-control study. Pulm. Pharmacol. Ther. 2016; 37: 89-94. https://doi.org/10.1016/j.pupt.2016.03.004.
31. Barnes P.J. Inflammatory endotypes in COPD. Allergy. 2019; 74 (7): 1249-1256. https://doi.org/10.1111/all.13760.
32. Liu T., Xiang Z.J., Hou X.M. et al. Blood eosinophil count-guided corticosteroid therapy and as a prognostic biomarker of exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther. Adv. Chronic. Dis. 2021; 12: 20406223211028768. https://doi.org/10.1177/20406223211028768.
33. MacLeod M., Papi A., Contoli M. et al. Chronic obstructive pulmonary disease exacerbation fundamentals: diagnosis, treatment, prevention and disease impact. Respirology. 2021; 26 (6): 532-551. https://doi.org/10.1111/resp.14041.
34. Muro S., Sugiura H., Darken P., Dorinsky P. Efficacy of budesonide/glycopyrronium/formoterol metered dose inhaler in patients with COPD: post-hoc analysis from the KRONOS study excluding patients with airway reversibility and high eosinophil counts. Respir. Res. 2021; 22 (1): 187. https://doi.org/10.1186/s12931-021-01773-1.
35. Brightling C.E., Bleecker E.R., Panettieri R.A.Jr. et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir. Med. 2014; 2 (11): 891-901. https://doi.org/10.1016/s2213-2600(14)70187-0.
36. Pavord I.D., Chapman K.R., Bafadhel M. et al. Mepolizumab for eosinophil-associated COPD: analysis of METREX and METREO. Int. J. Chron. Obstruct. Pulmon. Dis. 2021; 16: 1755-1770. https://doi.org/10.2147/COPD.S294333.
37. Министерство здравоохранения Российской Федерации. Хроническая обструктивная болезнь: Федеральные клинические рекомендации. Доступно на: https://www.spulmo.ru/upload/federal_klinicheskie_rekomendaciy_hobl.pdf [Дата обращения: 09.2021].
38. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Prevention, Diagnosis and Management of COPD. 2021 GOLD reports. Available at: https://goldcopd.org/2021-gold-reports/[Accessed: September, 2021].
39. Müllerová H., Meeraus W.H., Galkin D.V. et al. Clinical burden of illness among patients with severe eosinophilic COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 741-755. https://doi.org/10.2147/COPD.S194511