Lung auscultation: Pathogenic mechanisms underlying the respiratory sounds
https://doi.org/10.18093/0869-0189-2022-32-1-118-126
Abstract
Auscultation of the lungs is one of the oldest diagnostic methods invented by Rene Laenneck. Nowadays, auscultation hasn’t lost its clinical significance. However, the development of science and technical progress have brought a lot of new ideas about the pathogenesis and interpretation of lungs sounds. This, in turn, caused some changes in the nomenclature. Moreover, the nomenclature of lung sounds in several European countries does not differ significantly but does not fully correspond to the recommended terminology for the English language. In addition, the mechanisms underlying some respiratory murmurs are interpreted ambiguously at present. For example, the main respiratory sound is designated both as “vesicular” and as “normal” respiration because of persisting differences in explaining the pathogenesis of this murmur. There is also a considerable difference in the terminology of added sounds such as crackles, wheezing, rhonchi, as well as the difference in understanding of the underlying mechanisms.
Aim. This review analyses the existing differences in the interpretation of lung auscultation and the terminology used to describe respiratory sounds in the Russian and foreign medical literature.
Conclusion. Comparative analysis of Russian and foreign publications concerning the issues of lung auscultation demonstrates the existing differences in the terminology and understanding of the mechanisms that underly the main and adventitious respiratory sounds. Forming the common information space requires the unification of terminology and interpretation of physiological and pathological processes in the lungs responsible for the respiratory sounds. Recording the lung sounds with subsequent computer analysis will make it possible to objectify the auscultation data and classify the sounds more accurately.
About the Authors
G. P. ArutyunovRussian Federation
Grigoriy P. Arutyunov, Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of the Department of Propaedeutics of Internal Diseases, Pediatric Faculty
ul. Ostrovityanova 1, Moscow, 117997
tel.: (495) 952-73-77
Competing Interests:
The authors declare no conflict of interest
E. A. Kolesnikova
Russian Federation
Elena A. Kolesnikova, Candidate of Medicine, Associate Professor, Department of Propaedeutics of Internal Diseases, Pediatric Faculty
ul. Ostrovityanova 1, Moscow, 117997
tel.: (495) 952-73-77
Competing Interests:
The authors declare no conflict of interest
D. V. Polyakov
Russian Federation
Dmitry V. Polyakov, Candidate of Medicine, Associate Professor, Department of Propaedeutics of Internal Diseases, Pediatric Faculty
ul. Ostrovityanova 1, Moscow, 117997
tel.: (495) 952-73-77
Competing Interests:
The authors declare no conflict of interest
A. K. Rylova
Russian Federation
Anna K. Rylova, Doctor of Medicine, Professor, Department of Propaedeutics of Internal Diseases, Pediatric Faculty
ul. Ostrovityanova 1, Moscow, 117997
tel.: (495) 952-73-77
Competing Interests:
The authors declare no conflict of interest
M I. Korsunskaya
Russian Federation
Marina I. Korsunskaya, Candidate of Medicine, Аssistant, Department of Propaedeutics of Internal Diseases, Pediatric Faculty
ul. Ostrovityanova 1, Moscow, 117997
tel.: (495) 952-73-77
Competing Interests:
The authors declare no conflict of interest
References
1. Sovijarvi A.R., Malmberg L.P., Charbonneau G., Vandershoot J. Characteristics of breath sounds and adventitious respiratory sounds. Eur. Respir. Rev. 2000; 10 (77): 591–596.
2. Stone J. Rene Laёnnec. Clin. Cardiol. 1986; 9 (6): 302–304. DOI: 10.1002/clc.4960090619.
3. Duffin J. To see with a better eye: a life of R.T.H.Laennec. Princeton: Princeton University Press; 1998.
4. Pasterkamp H., Kramann S.S., Wodicka G.R. Respiratory sounds: Advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 1997; 156 (3, Pt 1): 974–987. DOI: 10.1164/ajrccm.156.3.9701115.
5. ATS–ACCP Ad Hoc Subcommittee. Report on pulmonary nomenclature. ATS News. 1977; 3: 5–6.
6. Shelagurov A.A. [Research methods in the clinic of internal diseases]. Мoscow: Meditsina; 1963 (in Russian).
7. Strutynskiy A.V., Baranov A.P., Roytberg G.E., Gaponenkov Ju.P. [Fundamentals of the semiotics of diseases of internal organs]. 4rd ed. Moscow: MEDpress-inform; 2007 (in Russian).
8. Forgacs P. Lung sounds. Br. J. Dis. Chest. 1969; 63 (1): 1–12. DOI: 10.1016/s0007-0971(69)80039-2.
9. Sarkar M., Madabhavi I., Niranjan N., Dogra M. Auscultation of the respiratory system. Ann. Thorac. Med. 2015; 10 (3): 158–168. DOI: 10.4103/1817-1737.160831.
10. Kraman S.S. Determination of the site of production of respiratory sounds by subtraction phonopneumography. Am. Rev. Respir. Dis. 1980; 122 (2): 303–309. DOI: 10.1164/arrd.1980.122.2.303.
11. Kraman S.S. Does laryngeal noise contribute to the vesicular lung sound? Am. Rev. Respir. Dis. 1981; 124 (3): 292–294.
12. Bohadana A., Izbicki G., Kraman S.S. Fundamentals of lung auscultation. N. Engl. J. Med. 2014; 20; 370 (8): 744–751. DOI: 10.1056/NEJMra1302901.
13. Koehler U., Hildebrandt O., Kerzel S. et al. Normal and adventitious breath sounds. Pneumologie. 2016; 70 (6): 397–404. DOI: 10.1055/s0042-106155.
14. Hardin J.C., Patterson J.L.Jr. Monitoring the state of the human airways by analysis of respiratory sound. Acta Astronaut. 1979; 6 (9): 1137–1151. DOI: 10.1016/0094-5765(79)90061-4.
15. Austrheim O., Kraman S.S. The effect of low density gas breathing on vesicular lung sounds. Respir. Physiol. 1985; 60 (2): 145–155. DOI: 10.1016/0034-5687(85)90099-4.
16. Bohadana A.B., Kanga J.F., Kraman S.S. Does airway closure affect lung sound generation? Clin. Physiol. 1988; 8 (4): 341–349. DOI: 10.1111/j.1475-097x.1988.tb00277.x.
17. Pasterkamp H., Sanchez I. Effect of gas density on respiratory sounds. Am. J. Respir. Crit. Care Med. 1996; 153 (3): 1087–1092. DOI: 10.1164/ajrccm.153.3.8630549.
18. Bürgi U., Huber L.C. [Lung auscultation – an overview]. Dtsch Med. Wochenschr. 2015; 140 (14): 1078–1082. DOI: 10.1055/s-0041-102883 (in German).
19. Pasterkamp H., Brand P.L., Everard M. et al. Towards the standardisation of lung sound nomenclature. Eur. Respir. J. 2016; 47 (3): 724–732. DOI: 10.1183/13993003.01132-2015.
20. Koehler U., Brandenburg U., Weissflog A. et al. [LEOSound, an innovative procedure for acoustic long-term monitoring of asthma symptoms (wheezing and coughing) in children and adults]. Pneumologie. 2014; 68 (4): 277–281. DOI: 10.1055/s-0034-1365156 (in German).
21. Marques A., Oliveira A., Jácome C. Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review. Respir. Care. 2014; 59 (5): 765–76. DOI: 10.4187/respcare.02765
22. Welsby P.D., Earis J.E. Some high pitched thoughts on chest examination. Postgrad. Med. J. 2001; 77 (912): 617–620. DOI: 10.1136/pmj.77.912.617.
23. Kukes V.G., Marinin V.F., Reuckiy I.A., Sivkov S.I. [Medical diagnostic methods: examination, palpation, percussion, auscultation]. Moscow: GЕOTAR-Media; 2006 (in Russian).
24. Gubergric A.Ya. [Direct examination of the patient.]. 3rd ed. Izhevsk: Udmurtia; 1996 (in Russian).
25. Forgacs P. Crackles and wheezes. Lancet. 1967; 22; 2 (7508): 203–205. DOI: 10.1016/s0140-6736(67)90024-4.
26. Meslier N., Charbonneau G., Racineux J.L. Wheezes. Eur. Respir. J. 1995; 8 (11): 1942–1948. DOI: 10.1183/09031936.95.08111942.
27. Gavriely N., Shee T.R., Cugell D.W., Grotberg J.B. Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J. Appl. Physiol. (1985). 1989; 66 (5): 2251–2261. DOI: 10.1152/jappl.1989.66.5.2251.
28. Guseinov A.A., Aisanov Z.R., Chuchalin A.G. [Acustic analysis of respiratory sounds: state of art]. Pul’monologiya. 2005; (6): 105–112. DOI: 10.18093/0869-0189-2005-0-6-105-112 (in Russian).
29. Kiyokawa H., Pasterkamp H. Volume-dependent variations of regional lung sound, amplitude, and phase. J. Appl. Physiol. (1985). 2002; 93 (3): 1030–1038. DOI: 10.1152/japplphysiol.00110.2002.
30. Forgacs P. The functional basis of pulmonary sounds. Chest. 1978; 73 (3): 399–405. DOI: 10.1378/chest.73.3.399.
31. Vyshedskiy A., Alhashem R.M., Paciej R. et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009; 135 (1): 156–164. DOI: 10.1378/chest.07-1562.
32. Robertson A.J., CoopeR. Rales, rhonchi, and Laennec. Lancet. 1957; 270 (6992): 417–423. https://doi.org/10.1016/s0140-6736(57)92359-0
33. Paciej R., Vyshedskiy A., Bana D., Murphy R. Squawks in pneumonia. Thorax. 2004; 59 (2): 177–178. DOI: 10.1136/thorax.2003.014415.
34. Earis J.E., Marsh K., Pearson M.G., Ogilvie C.M. The inspiratory “squawk” in extrinsic allergic alveolitis and other pulmonary fibroses. Thorax. 1982; 37 (12): 923–926. DOI: 10.1136/thx.37.12.923.
35. Forgacs P. The functional basis of pulmonary sounds. Chest. 1978; 73 (3): 399–405. DOI: 10.1378/chest.73.3.399.
Review
For citations:
Arutyunov G.P., Kolesnikova E.A., Polyakov D.V., Rylova A.K., Korsunskaya M.I. Lung auscultation: Pathogenic mechanisms underlying the respiratory sounds. PULMONOLOGIYA. 2022;32(1):118-126. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-1-118-126