Доклад ERS по хронической тромбоэмболической легочной гипертензии
https://doi.org/10.18093/0869-0189-2022-32-1-13-52
Аннотация
Хроническая тромбоэмболическая (ХТЭ) легочная гипертензия (ЛГ) – редкое осложнение острой тромбоэмболии легочной артерии (ТЭЛА) – как симптоматической, так и бессимптомной. При окклюзии проксимальных сегментов легочных артерий фиброзным внутрисосудистым материалом в комбинации со вторичной микроваскулопатией сосудов диаметром < 500 мкм повышаются легочное сосудистое сопротивление и прогрессирующая правожелудочковая недостаточность. Механизм трансформации кровяных сгустков в остаточный фиброзный материал до сих пор не установлен. ХТЭ ЛГ у пациентов с ЛГ подозревается в случае, когда по данным вентиляционно-перфузионной сцинтиграфии легких выявляются несоответствующие картине вентиляции дефекты перфузии, которые подтверждаются при катетеризации правых отделов сердца и визуализации сосудов. В зависимости от локализации и типов повреждений, помимо пожизненного приема антикоагулянтов, на сегодняшний день доступны хирургическое лечение, ангиопластика и медикаментозное лечение. В настоящем докладе представлен обзор литературы и описана современная практика установления диагноза и ведения больных ХТЭ ЛГ. Документ охватывает области определения, диагностики, эпидемиологии, наблюдения после острой ТЭЛА, патофизиологии, лечения с помощью легочной тромбэндартерэктомии, баллонной ангиопластики легочной артерии, лекарственных препаратов и их комбинаций, реабилитации и новых направлений исследований в области ХТЭ ЛГ. Доклад представляет собой результат первого совместного проекта по ЛГ Европейского респираторного общества, Международной ассоциации хронической тромбоэмболической легочной гипертензии и Европейской сети медицинских учреждений по редким заболеваниям легких. В докладе резюмируются текущие знания, но не даются формальные рекомендации для клинической практики.
Об авторах
М. ДелькруаБельгия
Марион Делькруа, Сопредседатель
Херестраат 49, 3000 Левен
Конфликт интересов:
М.Делькруа сообщает о получении грантов и другого вознаграждения (за услуги исследователя, лектора и консультанта; вознаграждение получено учреждением) от компаний Actelion/J&J, другого вознаграждения (за услуги исследователя, лектора и консультанта; вознаграждение получено учреждением) от компании Bayer, другого вознаграждения (за услуги лектора и консультанта; вознаграждение получено учреждением) от компании MSD, другого вознаграждения (за услуги исследователя; вознаграждение было получено учреждением) от компании Reata, другого вознаграждения (за услуги исследователя и консультанта; вознаграждение было получено учреждением) от компании Bellarophon, другого вознаграждения (за услуги консультанта; вознаграждение было получено учреждением) от компании Acceleron, не относящихся к представленным рекомендациям.
А. Торбицки
Польша
Адам Торбицки. Редакторы разделов
Отцвок
Конфликт интересов:
A.Торбицки сообщает о получении грантов и персонального вознаграждения за лекции и консультации от компаний Actelion/Janssen, Bayer и MSD, персонального вознаграждения за лекции от AOP, персонального вознаграждения за лекции и консультации от компании Pfizer, не относящихся к представленным рекомендациям.
Д. Гопалан
Великобритания
Дипа Гопалан. Редакторы разделов
Лондон
Конфликт интересов:
Д.Гопалан сообщает о получении другого вознаграждения (за услуги лектора) от компаний Actelion/J&J, другого вознаграждения
(за услуги лектора и консультанта) от компании Bayer, не относящихся к представленным рекомендациям
О. Ситбон
Франция
Оливье Ситбон. Редакторы разделов
Ле Кремлен-Бисетр
Конфликт интересов:
O.Ситбон сообщает о получении грантов, персонального вознаграждения и нефинансовой поддержки от компаний Actelion Pharmaceuticals и MSD, грантов от компании GlaxoSmithKline, персонального вознаграждения от компаний Bayer, Acceleron Pharmaceuticals, Gossamer Bio и Ferrer, не относящихся к представленным рекомендациям.
Ф. А. Клок
Нидерланды
Фредерикус А. Клок. Редакторы разделов
Лейден
Конфликт интересов:
Ф.A.Клок сообщает о получении научно-исследовательских грантов от компаний Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Daiichi-Sankyo, MSD и Actelion, Dutch Heart Foundation и Dutch Thrombosis association, не относящихся к представленным рекомендациям
И. Ланг
Австрия
Ирен Ланг. Редакторы разделов
Вена
Конфликт интересов:
И.Ланг сообщает о получении грантов и персонального вознаграждения от компаний Actelion-Janssen и AOP Orphan Pharma, персонального вознаграждения от компаний Medtronic, Ferrer и United Therapeutics, не относящихся к представленным рекомендациям
Д. Дженкинс
Великобритания
Дэвид Дженкинс. Редакторы разделов
Кембридж
Конфликт интересов:
Д.Дженкинс сообщает о получении грантов от компании Bayer и персонального вознаграждения за работу в составе консультационного совета от компании Actelion, не относящихся к представленным рекомендациям
Н. Х. Ким
Соединённые Штаты Америки
Ник Х. Ким. Редакторы разделов
Ла-Хойя, Калифорния
Конфликт интересов:
Н.Х.Ким сообщает о получении персонального вознаграждения за консультации от компаний Actelion, Bayer и Merck, не относящегося к представленным рекомендациям
М. Умбер
Франция
Марк Умбер. Редакторы разделов
Ле Кремлен-Бисетр
Конфликт интересов:
M.Умбер сообщает о получении грантов и персонального вознаграждения от компаний Actelion и Bayer, персонального вознаграждения от компаний Acceleron, GSK, Merck, Novartis, AstraZeneca и Sanofi, не относящихся к представленным рекомендациям
К. Джайс
Франция
Ксавье Джайс. Редакторы разделов
Ле Кремлен-Бисетр
Конфликт интересов:
M.Умбер сообщает о получении грантов и персонального вознаграждения от компаний Actelion и Bayer, персонального вознаграждения от компаний Acceleron, GSK, Merck, Novartis, AstraZeneca и Sanofi, не относящихся к представленным рекомендациям
Антон Ф. Нордеграаф
Нидерланды
Антон Фонк Нордеграаф. Редакторы разделов
Амстердам
Конфликт интересов:
A.Фонк Нордеграаф получает поддержку в рамках Нидерландской инициативы поисследованиям сердечно-сосудистых заболеваний (CVON-2012-08 PHAEDRA, CVON-2017-10 DOLPHIN-GENESIS) иНидерландской организации по научным исследованиям (NWO-VICI: 918.16.610), получал вознаграждение за проведение лекций от компаний Johnson & Johnson и Ferrer в последние 3 года и являлся членом научного консультационного совета компании Morphogen-XI
Д. Пепке-Заба
Великобритания
Джоанна Пепке-Заба. Редакторы разделов
Кембридж
Конфликт интересов:
Д.Пепке-Заба получал вознаграждение за проведение лекций и гонорары за консультации от компаний Actelion, Merck и Bayer. Учреждение, в котором она работает, получало научно-исследовательские и образовательные гранты от компаний Actelion и Merck.
Ф. Брено
Франция
Филипп Брено
Ле-Плесси-Робинсон
Конфликт интересов:
Ф.Брено заявляет об отсутствии конфликтов интересов
П. Дорфмюллер
Германия
Петер Дорфмюллер
Гисен
Лондон
Бад-Наухайм
Конфликт интересов:
П.Дорфмюллер заявляет об отсутствии конфликтов интересов
Э. Фадель
Эли Фадель
Ганновер
Конфликт интересов:
Э.Фадель заявляет об отсутствии конфликтов интересов
Х.-А. Гофрани
Германия
Хоссейн-Ардешир Гофрани
Гисен
Лондон
Бад-Наухайм
Конфликт интересов:
Х.-A.Гофрани сообщает о получении персонального вознаграждения и другого вознаграждения (за консультации) от компаний Actelion, Bayer AG, GlaxoSmithKline, Novartis и Pfizer, другого вознаграждения (за консультации) от компаний Bellerophon Pulse Technologies и MSD, грантов от компании Deutsche Forschungsgemeinschaft (DFG), во время проведения исследования
Мариус М. Хупер
Франция
Мариус М. Хупер
Ле Кремлен-Бис
Ганновер
Конфликт интересов:
M.M.Хупер сообщает о получении персонального вознаграждения за консультации и лекции от компаний Bayer AG, MSD, Actelion, Jansen, Acceleron и Pfizer во время проведения исследования
П. Янса
Чехия
Павел Янса
Прага
Конфликт интересов:
П.Янса сообщает о получении другого вознаграждения (в качестве исследователя) от компании Actelion, персонального вознаграждения и другого вознаграждения (в качестве исследователя) от компаний Bayer Pharma AG и Reata Pharmaceuticals, персонального вознаграждения от компаний AOP и MSD, не относящихся к представленным рекомендациям
М. Мадани
Соединённые Штаты Америки
Майкл Мадани
Сан-Диего, Калифорния
Конфликт интересов:
M.Maдани сообщает о получении персонального вознаграждения за консультации от компаний Actelion и Wexler Surgical, не относящегося к представленным рекомендациям
Х. Мацубара
Япония
Хироми Мацубара
Окаяма
Конфликт интересов:
. Х.Мацубара сообщает о получении персонального вознаграждения от компаний Actelion Pharmaceuticals Japan, Ltd, AOP Orphan Pharmaceuticals AG, Bayer Yakuhin, Ltd, Pfizer Japan, Inc., Nippon Shinyaku, Co., Ltd, Kaneka Medix Corporation, GlaxoSmithKline Pharmaceuticals, Ltd и United Therapeutics Corporation, не относящихся к представленным рекомендациям
Т. Ого
Япония
Такеши Ого
Осака
Конфликт интересов:
T.Oгo заявляет об отсутствии конфликтов интересов
А. Д’Армини
Италия
Андреа Д’Армини
Павия
Конфликт интересов:
A.Д’Армини сообщает о получении персонального вознаграждения от компаний Actelion Phamaceuticals, Bayer AG и Merck Sharp & Dohme, не относящегося к представленным рекомендациям
Н. Галие
Италия
Назарено Галие
Болонья
Конфликт интересов:
N.Galie сообщает о получении грантов и персонального вознаграждения от компаний Actelion и Janssen, персонального вознаграждения от компаний Pfizer и Ferrer, не относящихся к представленным рекомендациям
Б. Мейер
Германия
Бернхард Мейер
Ганновер
Конфликт интересов:
Б.Мейер сообщает о получении персонального вознаграждения за проведение лекций от компании Bayer AG, не относящегося к представленным рекомендациям
П. Коркери
Ирландия
Патрик Коркери. Представитель пациентов
Дублин
Конфликт интересов:
П.Коркери заявляет об отсутствии конфликтов интересов
Г. Месарош
Венгрия
Гергели Месарош. Представитель пациентов
Конфликт интересов:
Г.Месарош сообщает о получении персонального вознаграждения от компании Actelion Pharmaceuticals, не относящегося к представленным рекомендациям
Э. Майер
Германия
Экхард Майер. Равный вклад. Сопредседатель
Бад-Наухайм
Конфликт интересов:
Э.Майер сообщает о получении персонального вознаграждения за проведение лекций и консультации от компаний Actelion, Bayer и MSD во время проведения исследования
Ж. Симонно
Франция
Жеральд Симонно. Равный вклад. Сопредседатель
Ле Кремлен-Бисетр
Конфликт интересов:
Ж.Симонно сообщает о получении персонального комиссионного вознаграждения и нефинансовой поддержки от компаний Actelion, Bayer и MSD, не относящихся к представленным рекомендациям
Список литературы
1. Galiè N., Humbert M., Vachiéry J.L. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015; 46 (4): 903–975. DOI: 10.1183/13993003.01032-2015.
2. Taboada D., Pepke-Zaba J., Jenkins D.P. et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur. Respir. J. 2014; 44 (6): 1635–1645. DOI: 10.1183/09031936.00050114.
3. de Perrot M., Mayer E. Chronic thromboembolic pulmonary hypertension: do we need a new definition? Eur. Respir. J. 2014; 44 (6): 1401–1403. DOI: 10.1183/09031936.00177514.
4. Simonneau G., Montani D., Celermajer D.S. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019; 53 (1): 1801913. DOI: 10.1183/13993003.01913-2018.
5. van Kan C., van der Plas M.N., Reesink H.J. et al. Hemodynamic and ventilatory responses during exercise in chronic thromboembolic disease. J. Thorac. Cardiovasc. Surg. 2016; 152 (3): 763–771. DOI: 10.1016/j.jtcvs.2016.05.058.
6. Held M., Kolb P., Grün M. et al. Functional characterization of patients with chronic thromboembolic disease. Respiration. 2016; 91 (6): 503–509. DOI: 10.1159/000447247.
7. Claeys M., Claessen G., La Gerche A. et al. Impaired cardiac reserve and abnormal vascular load limit exercise capacity in chronic thromboembolic disease. JACC Cardiovasc. Imaging. 2019; 12 (8, Pt1): 1444–1456. DOI: 10.1016/j.jcmg.2018.07.021.
8. Guth S., Wiedenroth C.B., Rieth A. et al. Exercise right heart catheterisation before and after pulmonary endarterectomy in patients with chronic thromboembolic disease. Eur. Respir. J. 2018; 52 (3): 1800458. DOI: 10.1183/13993003.00458-2018.
9. Swietlik E.M., Ruggiero A., Fletcher A.J. et al. Limitations of resting haemodynamics in chronic thromboembolic disease without pulmonary hypertension. Eur. Respir. J. 2019; 53 (1): 1801787. DOI: 10.1183/13993003.01787-2018.
10. Kovacs G., Herve P., Barbera J.A. et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur. Respir. J. 2017; 50 (5): 1700578. DOI: 10.1183/13993003.00578-2017.
11. Schwaiblmair M., Faul C., von Scheidt W. et al. Detection of exercise-induced pulmonary arterial hypertension by cardiopulmonary exercise testing. Clin. Cardiol. 2012; 35 (9): 548–553. DOI: 10.1002/clc.22009.
12. Held M., Grün M., Holl R. et al. Cardiopulmonary exercise testing to detect chronic thromboembolic pulmonary hypertension in patients with normal echocardiography. Respiration. 2014; 87 (5): 379–387. DOI: 10.1159/000358565.
13. Quezada C.A., Jiménez D. Cardiopulmonary exercise testing with ventilatory gas analysis for evaluation of chronic thromboembolic pulmonary hypertension: unmasking its role after a therapeuthic intervention. Int. J. Cardiol. 2019; 296: 155–156. DOI: 10.1016/j.ijcard.2019.08.029.
14. Weatherald J., Farina S., Bruno N., Laveneziana P. Cardiopulmonary exercise testing in pulmonary hypertension. Ann. Am. Thorac. Soc. 2017; 14 (Suppl. 1): S84–92. DOI: 10.1513/AnnalsATS.201610-788FR.
15. Zhao Q.H., Wang L., Pudasaini B. et al. Cardiopulmonary exercise testing improves diagnostic specificity in patients with echocardiography-suspected pulmonary hypertension. Clin. Cardiol. 2017; 40 (2): 95–101. DOI: 10.1002/clc.22635.
16. Pinkstaff S.O., Burger C.D., Daugherty J. et al. Cardiopulmonary exercise testing in patients with pulmonary hypertension: clinical recommendations based on a review of the evidence. Expert Rev. Respir. Med. 2016; 10 (3): 279–295. DOI: 10.1586/17476348.2016.1144475.
17. Boulate D., Perros F., Dorfmüller P. et al. Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. J. Heart Lung Transplant. 2015; 34 (3): 457–467. DOI: 10.1016/j.healun.2014.07.005.
18. Dorfmüller P., Günther S., Ghigna M.R. et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur. Respir. J. 2014; 44 (5): 1275–1288. DOI: 10.1183/09031936.00169113.
19. Kim N.H, Delcroix M., Jenkins D.P. et al. Chronic thromboembolic pulmonary hypertension. J. Am. Coll. Cardiol. 2013; 62 (25, Suppl.): D92–99. DOI: 10.1016/j.jacc.2013.10.024.
20. Kim N.H., Delcroix M., Jais X. et al. Chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019; 53 (1): 1801915. DOI: 10.1183/13993003.01915-2018.
21. Kan Y., Yuan L., Meeks J.K. et al. The accuracy of V/Q SPECT in the diagnosis of pulmonary embolism: a meta-analysis. Acta Radiol. 2015; 56 (5): 565–572. DOI: 10.1177/0284185114533682.
22. Phillips J.J., Straiton J., Staff R.T. Planar and SPECT ventilation/perfusion imaging and computed tomography for the diagnosis of pulmonary embolism: a systematic review and meta-analysis of the literature, and cost and dose comparison. Eur. J. Radiol. 2015; 84 (7): 1392–1400. DOI: 10.1016/j.ejrad.2015.03.013.
23. Hess S., Frary E., Gerke O., Madsen P.H. State-of-the-art imaging in pulmonary embolism: ventilation/perfusion single-photon emission computed tomography versus computed tomography angiography – controversies, results, and recommendations from a systematic review. Semin. Thromb. Hemost. 2016; 42 (8): 833–845. DOI: 10.1055/s0036-1593376.
24. Soler X., Hoh C.K., Test V.J. et al. Single photon emission computed tomography in chronic thromboembolic pulmonary hypertension. Respirology. 2011; 16 (1): 131–137. DOI: 10.1111/j.1440-1843.2010.01867.x.
25. Simanek M., Koranda P. The benefit of personalized hybrid SPECT/CT pulmonary imaging. Am. J. Nucl. Med. Mol. Imaging. 2016; 6 (4): 215–222. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004063/
26. Derlin T., Kelting C., Hueper K. et al. Quantitation of perfused lung volume using hybrid SPECT/CT allows refining the assessment of lung perfusion and estimating disease extent in chronic thromboembolic pulmonary hypertension. Clin. Nucl. Med. 2018; 43 (6): e170–177. DOI: 10.1097/rlu.0000000000002085.
27. Roach P.J., Bailey D.L., Schembri G.P. et al. Transition from planar to SPECT V/Q scintigraphy: rationale, practicalities, and challenges. Semin. Nucl. Med. 2010; 40 (6): 397–407. DOI: 10.1053/j.semnuclmed.2010.07.004.
28. Bajc M., Neilly J.B., Miniati M. et al. EANM guidelines for ventilation/perfusion scintigraphy: part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography. Eur. J. Nucl. Med. Mol. Imaging. 2009; 36 (8): 1356–1370. DOI: 10.1007/s00259-009-1170-5.
29. Fuld M.K., Halaweish A.F., Haynes S.E. et al. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology. 2013; 267 (3): 747–756. DOI: 10.1148/radiol.12112789.
30. Giordano J., Khung S., Duhamel A. et al. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): dual-energy CT experience in 31 patients. Eur. Radiol. 2016; 27 (4): 1631–1639. DOI: 10.1007/s00330-016-4500-6.
31. Kim S.S., Hur J., Kim Y.J. et al. Dual-energy CT for differentiating acute and chronic pulmonary thromboembolism: an initial experience. Int. J. Cardiovasc. Imaging. 2014; 30 (Suppl. 2): 113–120. DOI: 10.1007/s10554-014-0508-7.
32. Le Faivre J., Duhamel A., Khung S. et al. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients. Eur. Radiol. 2016; 26 (11): 4011–4020. DOI: 10.1007/s00330-016-4262-1.
33. Takagi H., Ota H., Sugimura K. et al. Dual-energy CT to estimate clinical severity of chronic thromboembolic pulmonary hypertension: comparison with invasive right heart catheterization. Eur. J. Radiol. 2016; 85 (9): 1574–1580. DOI: 10.1016/j.ejrad.2016.06.010.
34. Meinel F., Graef A., Thierfelder K. et al. Automated quantification of pulmonary perfused blood volume by dual-energy CTPA in chronic thromboembolic pulmonary hypertension. Rofo. 2014; 186 (2): 151–156. DOI: 10.1055/s-0033-1350412.
35. Renapurkar R.D., Bolen M.A., Shrikanthan S. et al. Comparative assessment of qualitative and quantitative perfusion with dual-energy CT and planar and SPECT-CT V/Q scanning in patients with chronic thromboembolic pulmonary hypertension. Cardiovasc. Diagn. Ther. 2018; 8 (4): 414–422. DOI: 10.21037/cdt.2018.05.07.
36. Nakazawa T., Watanabe Y., Hori Y. et al. Lung perfused blood volume images with dual-energy computed tomography for chronic thromboembolic pulmonary hypertension: correlation to scintigraphy with single-photon emission computed tomography. J. Comput. Assist. Tomogr. 2011; 35 (5): 590–595. DOI: 10.1097/rct.0b013e318224e227.
37. Masy M., Giordano J., Petyt G. et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Radiol. 2018; 28 (12): 5100–5110. DOI: 10.1007/s00330-018-5467-2.
38. Dournes G., Verdier D., Montaudon M. et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur. Radiol. 2014; 24 (1): 42–51. DOI: 10.1007/s00330-013-2975-y.
39. Johns C.S., Swift A.J., Rajaram S. et al. Lung perfusion: MRI vs SPECT for screening in suspected chronic thromboembolic pulmonary hypertension. J. Magn. Reson. Imaging. 2017; 46 (6): 1693–1697. DOI: 10.1002/jmri.25714.
40. Rajaram S., Swift A.J., Telfer A. et al. 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: results from the ASPIRE Registry. Thorax. 2013; 68 (7): 677–678. DOI: 10.1136/thoraxjnl-2012-203020.
41. He J., Fang W., Lv B. et al. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl. Med. Commun. 2012; 33 (5): 459–463. DOI: 10.1097/mnm.0b013e32835085d9.
42. Rogberg A.N., Gopalan D., Westerlund E., Lindholm P. Do radiologists detect chronic thromboembolic disease on computed tomography? Acta Radiol. 2019; 60 (11): 1576–1583. DOI: 10.1177/0284185119836232.
43. Dong C., Zhou M., Liu D. et al. Diagnostic accuracy of computed tomography for chronic thromboembolic pulmonary hypertension: a systematic review and meta-analysis. PLoS One. 2015; 10 (4): e0126985. DOI: 10.1371/journal.pone.0126985.
44. Hinrichs J., Werncke T., Kaireit T. et al. C-arm computed tomography adds diagnostic information in patients with chronic thromboembolic pulmonary hypertension and a positive V/Q SPECT. Rofo. 2017; 189 (1): 49–56. DOI: 10.1055/s-0042-116232.
45. Hinrichs J.B., von Falck C., Hoeper M.M. et al. Pulmonary artery imaging in patients with chronic thromboembolic pulmonary hypertension: comparison of cone-beam CT and 64-row multidetector CT. J. Vasc. Interv. Radiol. 2016; 27 (3): 361–368.e2. DOI: 10.1016/j.jvir.2015.11.046.
46. Fukuda T., Ogo T., Nakanishi N. et al. Evaluation of organized thrombus in distal pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension using cone-beam computed tomography. Jpn. J. Radiol. 2016; 34 (6): 423–431. DOI: 10.1007/s11604-016-0538-2.
47. Sugiyama M., Fukuda T., Sanda Y. et al. Organized thrombus in pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension; imaging with cone beam computed tomography. Jpn. J. Radiol. 2014; 32 (7): 375–382. DOI: 10.1007/s11604-014-0319-8.
48. Hinrichs J.B., Renne J., Hoeper M.M. et al. Balloon pulmonary angioplasty: applicability of C-arm CT for procedure guidance. Eur. Radiol. 2016; 26 (11): 4064–4071. DOI: 10.1007/s00330-016-4280-z.
49. Ogo T., Fukuda T., Tsuji A. et al. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography. Eur. J. Radiol. 2017; 89: 270–276. DOI: 10.1016/j.ejrad.2016.12.013.
50. Maschke S.K., Hinrichs J.B., Renne J. et al. C-arm computed tomography (CACT)-guided balloon pulmonary angioplasty (BPA): evaluation of patient safety and peri- and post-procedural complications. Eur. Radiol. 2019; 29 (3): 1276–1284. DOI: 10.1007/s00330-018-5694-6.
51. Ley S., Ley-Zaporozhan J., Pitton M.B. et al. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Radiol. 2012; 22 (3): 607–616. DOI: 10.1007/s00330-011-2290-4.
52. Rajaram S., Swift A.J., Capener D. et al. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension. Eur. Radiol. 2012; 22 (2): 310–317. DOI: 10.1007/s00330-011-2252-x.
53. Grothues F., Moon J.C., Bellenger N.G. et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am. Heart J. 2004; 147 (2): 218–223. DOI: 10.1016/j.ahj.2003.10.005.
54. Kreitner K.F.J., Ley S., Kauczor H.U. et al. Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology. 2004; 232 (2): 535–543. DOI: 10.1148/radiol.2322030945.
55. Mauritz G.J., Vonk-Noordegraaf A., Kind T. Pulmonary endarterectomy normalizes interventricular dyssynchrony and right ventricular systolic wall stress. J. Cardiovasc. Magn. Reson. 2012; 14 (1): 5. DOI: 10.1186/1532-429x-14-5.
56. Berman M., Gopalan D., Sharples L. et al. Right ventricular reverse remodeling after pulmonary endarterectomy: magnetic resonance imaging and clinical and right heart catheterization assessment. Pulm. Circ. 2014; 4 (1): 36–44. DOI: 10.1086/674884.
57. Fukui S., Ogo T., Morita Y. et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur. Respir. J. 2014; 43 (5): 1394–1402. DOI: 10.1183/09031936.00012914.
58. Roller F.C., Wiedenroth C., Breithecker A. et al. Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur. Radiol. 2017; 27 (5): 1980–1991. DOI: 10.1007/s00330-016-4585-y.
59. Roeleveld R.J, Marcus J.T., Faes T.J.C. et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005; 234 (3): 710–717. DOI: 10.1148/radiol.2343040151.
60. Sanz J., Kuschnir P., Rius T. et al. Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology. 2007; 243 (1): 70–79. DOI: 10.1148/radiol.2431060477.
61. Kreitner K.F., Wirth G.M., Krummenauer F. et al. Noninvasive assessment of pulmonary hemodynamics in patients with chronic thromboembolic pulmonary hypertension by high temporal resolution phase-contrast MRI: correlation with simultaneous invasive pressure recordings. Circ. Cardiovasc. Imaging. 2013; 6 (5): 722–729. DOI: 10.1161/circimaging.112.000276.
62. García-Alvarez A., Fernández-Friera L., Mirelis J.G. et al. Non-invasive estimation of pulmonary vascular resistance with cardiac magnetic resonance. Eur. Heart J. 2011; 32 (19): 2438–2445. DOI: 10.1093/eurheartj/ehr173.
63. Reiter G., Reiter U., Kovacs G. et al. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology. 2015; 275 (1): 71–79. DOI: 10.1148/radiol.14140849.
64. Reiter G., Reiter U., Kovacs G. et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ. Cardiovasc. Imaging. 2008; 1 (1): 23–30. DOI: 10.1161/circimaging.108.780247.
65. Delcroix M., Kerr K., Fedullo P. Chronic thromboembolic pulmonary hypertension: Epidemiology and risk factors. Ann. Am. Thorac. Soc. 2016; 13 (Suppl. 3): S201–206. DOI: 10.1513/annalsats.201509-621as.
66. Escribano-Subias P., Blanco I., López-Meseguer M. et al. Survival in pulmonary hypertension in Spain: insights from the Spanish registry. Eur. Respir. J. 2012; 40 (3): 596–603. DOI: 10.1183/09031936.00101211.
67. Gibbs S. National audit of pulmonary hypertension. Great Britain, 2018–19. October 24, 2019. Available at: https://files.digital.nhs.uk/BA/4EF20E/NAPH%2010AR%20-%20Main%20Report.pdf [Accessed: February 24, 2020].
68. Gall H., Hoeper M.M., Richter M.J. et al. An epidemiological analysis of the burden of chronic thromboembolic pulmonary hypertension in the USA, Europe and Japan. Eur. Respir. Rev. 2017; 26 (143): 160121. DOI: 10.1183/16000617.0121-2016.
69. Cottin V., Avot D., Lévy-Bachelot L. et al. Identifying chronic thromboembolic pulmonary hypertension through the French national hospital discharge database. PLoS One. 2019; 14 (4): e0214649. DOI: 10.1371/journal.pone.0214649.
70. Moser K.M., Auger W.R., Fedullo P.F., Jamieson S.W. Chronic thromboembolic pulmonary hypertension: clinical picture and surgical treatment. Eur. Respir. J. 1992; 5 (3): 334–342. Available at: https://erj.ersjournals.com/content/erj/5/3/334.full.pdf
71. Pepke-Zaba J., Delcroix M., Lang I. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation. 2011; 124 (18): 1973–1981. DOI: 10.1161/circulationaha.110.015008.
72. Lang I.M., Madani M. Update on chronic thromboembolic pulmonary hypertension. Circulation. 2014; 130 (6): 508–518. DOI: 10.1161/circulationaha.114.009309.
73. Ogawa A., Satoh T., Fukuda T. et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: results of a multicenter registry. Circ. Cardiovasc. Qual. Outcomes. 2017; 10 (11): e004029. DOI: 10.1161/circoutcomes.117.004029.
74. Chausheva S., Naito A., Ogawa A. et al. Chronic thromboembolic pulmonary hypertension in Austria and Japan. J. Thorac. Cardiovasc. Surg. 2019; 158 (2): 604–614.e2. DOI: 10.1016/j.jtcvs.2019.01.019.
75. Pengo V., Lensing A.W.A., Prins M.H. et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N. Engl. J. Med. 2004; 350 (22): 2257–2264. DOI: 10.1056/nejmoa032274.
76. Golpe R., Pérez-de-Llano L.A., Castro-Añón O. et al. Right ventricle dysfunction and pulmonary hypertension in hemodynamically stable pulmonary embolism. Respir. Med. 2010; 104 (9): 1370–1376. DOI: 10.1016/j.rmed.2010.03.031.
77. Guérin L., Couturaud F., Parent F. et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb. Haemost. 2014; 112 (3): 598–605. DOI: 10.1160/th13-07-0538.
78. Simonneau G., Hoeper M.M. Evaluation of the incidence of rare diseases: difficulties and uncertainties, the example of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2017; 49 (2): 1602522. DOI: 10.1183/13993003.02522-2016.
79. Ende-Verhaar Y.M., Cannegieter S.C., Vonk-Noordegraaf A. et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur. Respir. J. 2017; 49 (2): 1601792. DOI: 10.1183/13993003.01792-2016.
80. Coquoz N., Weilenmann D., Stolz D. et al. Multicentre observational screening survey for the detection of CTEPH following pulmonary embolism. Eur. Respir. J. 2018; 51 (4): 1702505. DOI: 10.1183/13993003.02505-2017.
81. Wartski M., Collignon M.A. Incomplete recovery of lung perfusion after 3 months in patients with acute pulmonary embolism treated with antithrombotic agents. THESEE Study Group. Tinzaparin ou Heparin Standard: Evaluation dans l’Embolie Pulmonaire Study. J. Nucl. Med. 2000; 41 (6): 1043–1048. Available at: https://www.researchgate.net/publication/12462294_Incomplete_recovery_of_lung_perfusion_after_3_months_in_patients_with_acute_pulmonary_embolism_treated_with_antithrombotic_agents_THESEE_Study_Group_Tinzaparin_ou_Heparin_Standard_Evaluation_dans_l’Em
82. Nijkeuter M., Hovens M.M.C., Davidson B.L. et al. Resolution of thromboemboli in patients with acute pulmonary embolism: a systematic review. Chest. 2006; 129 (1): 192–197. DOI: 10.1378/chest.129.1.192.
83. Sanchez O., Helley D., Couchon S. et al. Perfusion defects after pulmonary embolism: risk factors and clinical significance. J. Thromb. Haemost. 2010; 8 (6): 1248–1255. DOI: 10.1111/j.1538-7836.2010.03844.x.
84. Meneveau N., Ider O., Seronde M.F. et al. Long-term prognostic value of residual pulmonary vascular obstruction at discharge in patients with intermediate – to high-risk pulmonary embolism. Eur. Heart. J. 2013; 34 (9): 693–701. DOI: 10.1093/eurheartj/ehs365.
85. Ma K.A., Kahn S.R., Akaberi A. et al. Serial imaging after pulmonary embolism and correlation with functional limitation at 12 months: results of the ELOPE study. Res. Pract. Thromb. Haemost. 2018; 2 (4): 670–677. DOI: 10.1002/rth2.12123.
86. Riedel M., Stanek V., Widimsky J. et al. Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982; 81 (2): 151–158. DOI: 10.1378/chest.81.2.151.
87. Lewczuk J., Piszko P., Jagas J. et al. Prognostic factors in medically treated patients with chronic pulmonary embolism. Chest. 2001; 119 (3): 818–823. DOI: 10.1378/chest.119.3.818.
88. Prandoni P., Ageno W., Mumoli N. et al. Recanalization rate in patients with proximal vein thrombosis treated with the direct oral anticoagulants. Thromb. Res. 2017; 153: 97–100. DOI: 10.1016/j.thromres.2017.03.022.
89. Piazza G., Mani V., Goldhaber S.Z. et al. Magnetic resonance venography to assess thrombus resolution with edoxaban monotherapy versus parenteral anticoagulation/warfarin for symptomatic deep vein thrombosis: a multicenter feasibility study. Vasc. Med. 2016; 21 (4): 361–368. DOI: 10.1177/1358863x16645853.
90. Bunclark K., Newnham M., Chiu Y.D. et al. A multicenter study of anticoagulation in operable chronic thromboembolic pulmonary hypertension. J. Thromb. Haemost. 2020; 18 (1): 114–122. DOI: 10.1111/jth.14649.
91. Houghton D.E., Lekah A., Macedo T.A. et al. Resolution of acute lower extremity deep vein thrombosis with rivaroxaban compared to warfarin. J. Thromb. Thrombolysis. 2020; 49 (2): 199–205. DOI: 10.1007/s11239-019-01932-8.
92. Konstantinides S.V., Meyer G., Becattini C. et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019; 54 (3): 1901647. DOI: 10.1183/13993003.01647-2019.
93. Konstantinides S.V., Meyer G., Becattini C. et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020; 41 (4): 543-603. DOI: 10.1093/eurheartj/ehz405.
94. Pengo V., Denas G., Zoppellaro G. et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018; 132 (13): 1365–1371. DOI: 10.1182/blood-2018-04-848333.
95. Moll S., Crona D.J., Martin K. Direct oral anticoagulants in extremely obese patients: OK to use? Res. Pract. Thromb. Haemost. 2018; 3 (2): 152–155. DOI: 10.1002/rth2.12178.
96. Ingrasciotta Y., Crisafulli S., Pizzimenti V. et al. Pharmacokinetics of new oral anticoagulants: implications for use in routine care. Expert. Opin. Drug Metab. Toxicol. 2018; 14 (10): 1057–1069. DOI: 10.1080/17425255.2018.1530213.
97. Bonderman D., Jakowitsch J., Adlbrecht C. et al. Medical conditions increasing the risk of chronic thromboembolic pulmonary hypertension. Thromb. Haemost. 2005; 93 (3): 512–516. DOI: 10.1160/th04-10-0657.
98. Lang I., Simonneau G., Pepke-Zaba J. et al. Factors associated with diagnosis and operability of chronic thromboembolic pulmonary hypertension: a case-control study. Thromb. Haemost. 2013; 110 (1): 83–91. DOI: 10.1160/th13-02-0097.
99. Delcroix M., Lang I., Pepke-Zaba J. et al. Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. Circulation. 2016; 133 (9): 859–871. DOI: 10.1161/circulationaha.115.016522.
100. Ende-Verhaar Y.M., Huisman M.V., Klok F.A. To screen or not to screen for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb. Res. 2017; 151: 1–7. DOI: 10.1016/j.thromres.2016.12.026.
101. Ende-Verhaar Y.M., van den Hout W.B., Bogaard H.J. et al. Healthcare utilization in chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J. Thromb. Haemost. 2018; 16 (11): 2168–2174. DOI: 10.1111/jth.14266.
102. Klok F.A., Barco S., Konstantinides S.V. et al. Determinants of diagnostic delay in chronic thromboembolic pulmonary hypertension: results from the European CTEPH Registry. Eur. Respir. J. 2018; 52 (6): 1801687. DOI: 10.1183/13993003.01687-2018.
103. Jensen K.W., Kerr K.M., Fedullo P.F. et al. Pulmonary hypertensive medical therapy in chronic thromboembolic pulmonary hypertension before pulmonary thromboendarterectomy. Circulation. 2009; 120 (13): 1248–1254. DOI: 10.1161/circulationaha.109.865881.
104. Nishiyama K.H., Saboo S.S., Tanabe Y. et al. Chronic pulmonary embolism: diagnosis. Cardiovasc. Diagn. Ther. 2018; 8 (3): 253–271. DOI: 10.21037/cdt.2018.01.09.
105. Rajaram S., Swift A.J., Condliffe R. et al. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE Registry. Thorax. 2015; 70 (4): 382–387. DOI: 10.1136/thoraxjnl-2014-206088.
106. Ende-Verhaar Y.M., Meijboom L.J., Kroft L.J.M. et al. Usefulness of standard computed tomography pulmonary angiography performed for acute pulmonary embolism for identification of chronic thromboembolic pulmonary hypertension: results of the InShape III study. J. Heart Lung Transplant. 2019; 38 (7): 731–738. DOI: 10.1016/j.healun.2019.03.003.
107. McIntyre K.M., Sasahara A.A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 1971; 28 (3): 288–294. DOI: 10.1016/0002-9149(71)90116-0.
108. Klok F.A., Delcroix M., Bogaard H.J. Chronic thromboembolic pulmonary hypertension from the perspective of patients with pulmonary embolism. J. Thromb. Haemost. 2018; 16 (6): 1040–1051. DOI: 10.1111/jth.14016.
109. Sista A.K., Klok F.A. Late outcomes of pulmonary embolism: the post-PE syndrome. Thromb. Res. 2018; 164: 157–162. DOI: 10.1016/j.thromres.2017.06.017.
110. Sista A.K., Miller L.E., Kahn S.R., Kline J.A. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: systematic review with meta-analysis. Vasc. Med. 2017; 22 (1): 37–43. DOI: 10.1177/1358863x16670250.
111. Klok F.A., van der Hulle T., den Exter P.L. et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 2014; 28 (6): 221–226. DOI: 10.1016/j.blre.2014.07.003.
112. Klok F.A., Dzikowska-Diduch O., Kostrubiec M. et al. Derivation of a clinical prediction score for chronicthromboembolic pulmonary hypertension after acute pulmonary embolism. J. Thromb. Haemost. 2016; 14 (1): 121–128. DOI: 10.1111/jth.13175.
113. Wittram C. How I do it: CT pulmonary angiography. AJR Am. J. Roentgenol. 2007; 188 (5): 1255–1261. DOI: 10.2214/ajr.06.1104.
114. Helmersen D., Provencher S., Hirsch A.M. et al. Diagnosis of chronic thromboembolic pulmonary hypertension: a Canadian Thoracic Society clinical practice guideline update. Can. J. Respir. Crit. Care Sleep Med. 2019; 3 (4): 177–198. DOI: 10.1080/24745332.2019.1631663.
115. Klok F.A, van Kralingen K.W., van Dijk A.P.J. et al. Prevalence and potential determinants of exertional dyspnea after acute pulmonary embolism. Respir. Med. 2010; 104 (11): 1744–1749. DOI: 10.1016/j.rmed.2010.06.006.
116. Kahn S.R., Akaberi A., Granton J.T. et al. Quality of life, dyspnea, and functional exercise capacity following a first episode of pulmonary embolism: results of the ELOPE cohort study. Am. J. Med. 2017; 130 (8): 990.e9–990.e21. DOI: 10.1016/j.amjmed.2017.03.033.
117. Kahn S.R., Hirsch A.M., Akaberi A. et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest. 2017; 151 (5): 1058–1068. DOI: 10.1016/j.chest.2016.11.030.
118. Sznajder M., Dzikowska-Diduch O., Kurnicka K. et al. Increased systemic arterial stiffness in patients with chronic thromboembolic pulmonary hypertension. Cardiol. J. 2020; 27 (6): 742–748. DOI: 10.5603/cj.a2018.0109.
119. Pietra G.G., Capron F., Stewart S. et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J. Am. Coll. Cardiol. 2004; 43 (12, Suppl.): S25–32. DOI: 10.1016/j.jacc.2004.02.033.
120. Humbert M., Guignabert C., Bonnet S. et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur. Respir. J. 2019; 53 (1): 1801887. DOI: 10.1183/13993003.01887-2018.
121. Moser K.M., Bloor C.M. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest. 1993; 103 (3): 685–692. DOI: 10.1378/chest.103.3.685.
122. Gerges C., Gerges M., Friewald R. et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: hemodynamic phenotyping and histomorphometric assessment. Circulation. 2020; 141 (5): 376–386. DOI: 10.1161/circulationaha.119.041515.
123. Noly P.E., Guihaire J., Coblence M. et al. Chronic thromboembolic pulmonary hypertension and assessment of right ventricular function in the piglet. J. Vis. Exp. 2015; (105): e53133. DOI: 10.3791/53133.
124. Tsai H.Y., Chin C.S., Tsai I.C. Imaging as a biomarker in Behcet disease: prognostic and therapeutic implications of serial pulmonary CT angiography. AJR Am. J. Roentgenol. 2011; 196 (1): W105–106. DOI: 10.2214/ajr.10.5147.
125. Perino M.G., Moldobaeva A., Jenkins J. et al. Chemokine localization in bronchial angiogenesis. PLoS One. 2013; 8 (6): e66432. DOI: 10.1371/journal.pone.0066432.
126. Mercier O., Fadel E. Chronic thromboembolic pulmonary hypertension: animal models. Eur. Respir. J. 2013; 41 (5): 1200–1206. DOI: 10.1183/09031936.00101612.
127. Yi E.S., Kim H., Ahn H. et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension: a morphometric and immunohistochemical study. Am. J. Respir. Crit. Care Med. 2000; 162 (4, Pt 1): 1577–1586. DOI: 10.1164/ajrccm.162.4.9912131.
128. Galambos C., Sims-Lucas S., Abman S.H. et al. Intrapulmonary bronchopulmonary anastomoses and plexiform lesions in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2016; 193 (5): 574–576. DOI: 10.1164/rccm.201507-1508le.
129. Ghigna M.R., Guignabert C., Montani D. et al. BMPR2 mutation status influences bronchial vascular changes in pulmonary arterial hypertension. Eur. Respir. J. 2016; 48 (6): 1668–1681. DOI: 10.1183/13993003.00464-2016.
130. Azarian R., Wartski M., Collignon M.A. et al. Lung perfusion scans and hemodynamics in acute and chronic pulmonary embolism. J. Nucl. Med. 1997; 38 (6): 980–983. Available at: https://www.researchgate.net/publication/14030226_Lung_perfusion_scans_and_hemodynamics_in_acute_and_chronic_pulmonary_embolism
131. Kim N.H.S., Fesler P., Channick R.N. et al. Preoperative partitioning of pulmonary vascular resistance correlates with early outcome after thromboendarterectomy for chronic thromboembolic pulmonary hypertension. Circulation. 2004; 109 (1): 18–22. DOI: 10.1161/01.cir.0000111841.28126.d4.
132. Toshner M., Suntharalingam J., Fesler P. et al. Occlusion pressure analysis role in partitioning of pulmonary vascular resistance in CTEPH. Eur. Respir. J. 2012; 40 (3): 612–617. DOI: 10.1183/09031936.00134111.
133. Simonneau G., Torbicki A., Dorfmüller P. et al. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur .Respir. Rev. 2017; 26 (143): 160112. DOI: 10.1183/16000617.0112-2016.
134. Ley S., Kreitner K.F., Morgenstern I. et al. Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. AJR Am. J. Roentgenol. 2002; 179 (5): 1209–1215. DOI: 10.2214/ajr.179.5.1791209.
135. Miller F., Coulden R.A., Sonnex E. et al. The use of MR flow mapping in the assessment of pulmonary artery blood flow following pulmonary thrombo-endarterectomy: Proceedings of the Scientific Assembly and Annual Meeting, December, 2003.
136. Reiter U., Reiter G., Kovacs G. et al. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One. 2013; 8 (12): e82212. DOI: 10.1371/journal.pone.0082212.
137. Ota H., Sugimura K., Miura M., Shimokawa H. Four-dimensional flow magnetic resonance imaging visualizes drastic change in vortex flow in the main pulmonary artery after percutaneous transluminal pulmonary angioplasty in a patient with chronic thromboembolic pulmonary hypertension. Eur. Heart. J. 2015; 36 (25): 1630. DOI: 10.1093/eurheartj/ehv054.
138. Polanowski T., Kurzyna M., Kuca P. et al. [Differences in hemodynamics of thromboembolic and primary pulmonary hypertension]. Pol. Arch. Med. Wewn. 2000; 104 (5): 741–745 (in Polish).
139. Quarck R., Nawrot T., Meyns B., Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009; 53 (14): 1211–1218. DOI: 10.1016/j.jacc.2008.12.038.
140. Axell R.G., Messer S.J., White P.A. et al. Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Physiol. Rep. 2017; 5 (7): e13227. DOI: 10.14814/phy2.13227.
141. MacKenzie Ross R.V., Toshner M.R., Soon E. et al. Decreased time constant of the pulmonary circulation in chronic thromboembolic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2013; 305 (2): H259–264. DOI: 10.1152/ajpheart.00128.2013.
142. Menzel T., Wagner S., Kramm T. et al. Pathophysiology of impaired right and left ventricular function in chronic embolic pulmonary hypertension: changes after pulmonary thromboendarterectomy. Chest. 2000; 118 (4): 897–903. DOI: 10.1378/chest.118.4.897.
143. Bonderman D., Martischnig A.M., Vonbank K. et al. Right ventricular load at exercise is a cause of persistent exercise limitation in patients with normal resting pulmonary vascular resistance after pulmonary endarterectomy. Chest. 2011; 139 (1): 122–127. DOI: 10.1378/chest.10-0348.
144. Jenkins D., Madani M., Fadel E. et al. Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017; 26 (143): 160111. DOI: 10.1183/16000617.0111-2016.
145. Mayer E., Jenkins D., Lindner J. et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J. Thorac. Cardiovasc. Surg. 2011; 141 (3): 702–710. DOI: 10.1016/j.jtcvs.2010.11.024.
146. Boulate D., Mercier O., Mussot S. et al. Extracorporeal life support after pulmonary endarterectomy as a bridge to recovery or transplantation: lessons from 31 consecutive patients. Ann. Thorac. Surg. 2016; 102 (1): 260–268. DOI: 10.1016/j.athoracsur.2016.01.103.
147. Madani M., Ogo T., Simonneau G. The changing landscape of chronic thromboembolic pulmonary hypertension management. Eur. Respir. Rev. 2017; 26 (146): 170105. DOI: 10.1183/16000617.0105-2017.
148. Kawakami T., Ogawa A., Miyaji K. et al. Novel angiographic classification of each vascular lesion in chronic thromboembolic pulmonary hypertension based on selective angiogram and results of balloon pulmonary angioplasty. Circ. Cardiovasc. Interv. 2016; 9 (10): e003318. DOI: 10.1161/circinterventions.115.003318.
149. D’Armini A.M., Morsolini M., Mattiucci G. et al. Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension. J. Thorac. Cardiovasc. Surg. 2014; 148 (3): 1005–1011. DOI: 10.1016/j.jtcvs.2014.06.052.
150. Hsieh W.C., Jansa P., Huang W.C. et al. Residual pulmonary hypertension after pulmonary endarterectomy: a meta-analysis. J. Thorac. Cardiovasc. Surg. 2018; 156 (3): 1275–1287. DOI: 10.1016/j.jtcvs.2018.04.110.
151. Madani M.M., Auger W.R., Pretorius V. et al. Pulmonary endarterectomy: recent changes in a single institution’s experience of more than 2,700 patients. Ann. Thorac. Surg. 2012; 94 (1): 97–103. DOI: 10.1016/j.athoracsur.2012.04.004.
152. Cannon J.E., Su L., Kiely D.G. et al. Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the United Kingdom national cohort. Circulation. 2016; 133 (18): 1761–1771. DOI: 10.1161/circulationaha.115.019470.
153. Vuylsteke A., Sharples L., Charman G. et al. Circulatory arrest versus cerebral perfusion during pulmonary endarterectomy surgery (PEACOG): a randomised controlled trial. Lancet. 2011; 378 (9800): 1379–1387. DOI: 10.1016/s0140-6736(11)61144-6.
154. Corsico A.G., D’Armini A.M., Cerveri I. et al. Long-term outcome after pulmonary endarterectomy. Am. J. Respir. Crit. Care Med. 2008; 178 (4): 419–424. DOI: 10.1164/rccm.200801-101oc.
155. Kramm T., Eberle B., Guth S. et al. Inhaled iloprost to control residual pulmonary hypertension following pulmonary endarterectomy. Eur. J. Cardiothorac. Surg. 2005; 28 (6): 882–888. DOI: 10.1016/j.ejcts.2005.09.007.
156. Ghofrani H.A., D’Armini A.M., Grimminger F. et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N. Engl. J. Med. 2013; 369 (4): 319–329. DOI: 10.1056/nejmoa1209657.
157. Shimura N., Kataoka M., Inami T. et al. Additional percutaneous transluminal pulmonary angioplasty for residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int. J. Cardiol. 2015; 183: 138–142. DOI: 10.1016/j.ijcard.2015.01.034.
158. Ali J.M., Dunning J., Ng C. et al. The outcome of reoperative pulmonary endarterectomy surgery. Interact. Cardiovasc. Thorac. Surg. 2018; 26 (6): 932–937. DOI: 10.1093/icvts/ivx424.
159. Mizoguchi H., Ogawa A., Munemasa M. et al. Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension. Circ. Cardiovasc. Interv. 2012; 5 (6): 748–755. DOI: 10.1161/circinterventions.112.971077.
160. Kataoka M., Inami T., Hayashida K. et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ. Cardiovasc. Interv. 2012; 5 (6): 756–762. DOI: 10.1161/circinterventions.112.971390.
161. Sugimura K., Fukumoto Y., Satoh K. et al. Percutaneous transluminal pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension. Circ. J. 2012; 76 (2): 485–488. DOI: 10.1253/circj.cj-11-1217.
162. Lang I., Meyer B.C., Ogo T. et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017; 26 (143): 160119. DOI: 10.1183/16000617.0119-2016.
163. Wiedenroth C.B., Liebetrau C., Breithecker A. et al. Combined pulmonary endarterectomy and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. J. Heart Lung Transplant. 2016; 35 (5): 591–596. DOI: 10.1016/j.healun.2015.10.030.
164. Ogo T. Balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension. Curr. Opin. Pulm. Med. 2015; 21 (5): 425–431. DOI: 10.1097/mcp.0000000000000188.
165. Zoppellaro G., Badawy M.R., Squizzato A. et al. Balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension – a systematic review and meta-analysis. Circ. J. 2019; 83 (8): 1660–1667. DOI: 10.1253/circj.cj-19-0161.
166. Darocha S., Pietura R., Pietrasik A. et al. Improvement in quality of life and hemodynamics in chronic thromboembolic pulmonary hypertension treated with balloon pulmonary angioplasty. Circ. J. 2017; 81 (4): 552–557. DOI: 10.1253/circj.cj-16-1075.
167. Ogawa A., Matsubara H. After the dawn – balloon pulmonary angioplasty for patients with chronic thromboembolic pulmonary hypertension. Circ. J. 2018; 82 (5): 1222–1230. DOI: 10.1253/circj.cj-18-0258.
168. Fukui S., Ogo T., Goto Y. et al. Exercise intolerance and ventilatory inefficiency improve early after balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Int. J. Cardiol. 2015; 180: 66–68. DOI: 10.1016/j.ijcard.2014.11.187.
169. Olsson K.M., Wiedenroth C.B., Kamp J.C. et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur. Respir. J. 2017; 49 (6): 1602409. DOI: 10.1183/13993003.02409-2016.
170. Brenot P., Jaïs X., Taniguchi Y. et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019; 53 (5): 1802095. DOI: 10.1183/13993003.02095-2018.
171. Feinstein J.A., Goldhaber S.Z., Lock J.E. et al. Balloon pulmonary angioplasty for treatment of chronic thromboembolic pulmonary hypertension. Circulation. 2001; 103 (1): 10–13. DOI: 10.1161/01.cir.103.1.10.
172. Ejiri K., Ogawa A., Fujii S. et al. Vascular injury is a major cause of lung injury after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circ. Cardiovasc. Interv. 2018; 11 (12): e005884. DOI: 10.1161/circinterventions.117.005884.
173. Inami T., Kataoka M., Shimura N. et al. Incidence, avoidance, and management of pulmonary artery injuries in percutaneous transluminal pulmonary angioplasty. Int. J. Cardiol. 2015; 201: 35–37. DOI: 10.1016/j.ijcard.2015.08.052.
174. Inami T., Kataoka M., Yanagisawa R. et al. Long-term outcomes after percutaneous transluminal pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Circulation. 2016; 134 (24): 2030–2032. DOI: 10.1161/circulationaha.116.024201.
175. Aoki T., Sugimura K., Tatebe S. et al. Comprehensive evaluation of the effectiveness and safety of balloon pulmonary angioplasty for inoperable chronic thrombo-embolic pulmonary hypertension: long-term effects and procedure-related complications. Eur. Heart J. 2017; 38 (42): 3152–3159. DOI: 10.1093/eurheartj/ehx530.
176. Taniguchi Y., Jaïs X., Jevnikar M. et al. Predictors of survival in patients with not-operated chronic thromboembolic pulmonary hypertension. J. Heart Lung Transplant. 2019; 38 (8): 833–842. DOI: 10.1016/j.healun.2019.04.006.
177. Humbert M., Simonneau G., Pittrow D. et al. Safety of riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension with concomitant novel oral anticoagulants or vitamin K antagonist use: data from the EXPERT Registry. Am. J. Respir. Crit. Care Med. 2020; 201: A6043. DOI: 10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A6043.
178. Jeong I., Fernandes T., Alotaibi M., Kim N.H. Direct oral anticoagulant use and thrombus detection in patients with chronic thromboembolic pulmonary hypertension referred for pulmonary thromboendarterectomy. Eur. Respir. J. 2019; 54: OA5161. DOI: 10.1183/13993003.congress-2019.OA5161.
179. Skoro-Sajer N., Hack N., Sadushi-Koliçi R. et al. Pulmonary vascular reactivity and prognosis in patients with chronic thromboembolic pulmonary hypertension: a pilot study. Circulation. 2009; 119 (2): 298–305. DOI: 10.1161/circulationaha.108.794610.
180. Suntharalingam J., Hughes R.J., Goldsmith K. et al. Acute haemodynamic responses to inhaled nitric oxide and intravenous sildenafil in distal chronic thromboembolic pulmonary hypertension (CTEPH). Vascul. Pharmacol. 2007; 46 (6): 449–455. DOI: 10.1016/j.vph.2007.01.008.
181. Suntharalingam J., Treacy C.M., Doughty N.J. et al. Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. Chest. 2008; 134 (2): 229–236. DOI: 10.1378/chest.07-2681.
182. Jaïs X., D’Armini A.M., Jansa P. et al. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J. Am. Coll. Cardiol. 2008; 52 (25): 2127–2134. DOI: 10.1016/j.jacc.2008.08.059.
183. Ghofrani H.A., Simonneau G., D’Armini A.M. et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir. Med. 2017; 5 (10): 785–794. DOI: 10.1016/s2213-2600(17)30305-3.
184. Sadushi-Koliçi R., Jansa P., Kopeć G. et al. Subcutaneous treprostinil for the treatment of severe non-operable chronic thromboembolic pulmonary hypertension (CTREPH): a double-blind, phase 3, randomised controlled trial. Lancet Respir. Med. 2019; 7 (3): 239–248. DOI: 10.1016/s2213-2600(18)30367-9.
185. Gabrielly M., Bourlier D., Taniguchi Y. et al. Initial dual oral combination therapy in inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Respir. J. 2018; 52: PA3053. DOI: 10.1183/13993003.congress-2018.PA3053.
186. Tromeur C., Jaïs X., Mercier O. et al. Factors predicting outcome after pulmonary endarterectomy. PLoS One. 2018; 13 (6): e0198198. DOI: 10.1371/journal.pone.0198198.
187. Nagaya N., Sasaki N., Ando M. et al. Prostacyclin therapy before pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension. Chest. 2003; 123 (2): 338–343. DOI: 10.1378/chest.123.2.338.
188. Bresser P., Fedullo P.F., Auger W.R. et al. Continuous intravenous epoprostenol for chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2004; 23 (4): 595–600. DOI: 10.1183/09031936.04.00020004.
189. Reesink H.J., Surie S., Kloek J.J. et al. Bosentan as a bridge to pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J. Thorac. Cardiovasc. Surg. 2010; 139 (1): 85–91. DOI: 10.1016/j.jtcvs.2009.03.053.
190. Castro M.A., Piloto B., Dos Santos Fernandes C.J.C. et al. Use of medical therapies before pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension patients with severe hemodynamic impairment. PLoS One. 2020; 15 (5): e0233063. DOI: 10.1371/journal.pone.0233063.
191. Kawashima T., Yoshitake A., Kawakami T., Shimizu H. Two-stage treatment using balloon pulmonary angioplasty and pulmonary endarterectomy in a patient with chronic thromboembolic pulmonary hypertension. Ann. Vasc. Surg. 2018; 49: 315.e5–315.e7. DOI: h10.1016/j.avsg.2017.11.057.
192. Yanaka K., Nakayama K., Shinke T. et al. Sequential hybrid therapy with pulmonary endarterectomy and additional balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. J. Am. Heart Assoc. 2018; 7 (13): e008838. DOI: 10.1161/jaha.118.008838.
193. Araszkiewicz A., Darocha S., Pietrasik A. et al. Balloon pulmonary angioplasty for the treatment of residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int. J. Cardiol. 2019; 278: 232–237. DOI: 10.1016/j.ijcard.2018.10.066.
194. Nakamura M., Sunagawa O., Tsuchiya H. et al. Rescue balloon pulmonary angioplasty under veno-arterial extracorporeal membrane oxygenation in a patient with acute exacerbation of chronic thromboembolic pulmonary hypertension. Int. Heart J. 2015; 56 (1): 116–120. DOI: 10.1536/ihj.14-257.
195. Collaud S., Brenot P., Mercier O., Fadel E. Rescue balloon pulmonary angioplasty for early failure of pulmonary endarterectomy: The earlier the better? Int. J. Cardiol. 2016; 222: 39–40. DOI: 10.1016/j.ijcard.2016.07.021.
196. Wiedenroth C.B., Ghofrani H.A., Adameit M.S.D. et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm. Circ. 2018; 8 (3): 2045894018783996. DOI: 10.1177/2045894018783996.
197. Mereles D., Ehlken N., Kreuscher S. et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006; 114 (14): 1482–1489. DOI: 10.1161/circulationaha.106.618397.
198. Ehlken N., Lichtblau M., Klose H. et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur. Heart J. 2016; 37 (1): 35–44. DOI: 10.1093/eurheartj/ehv337.
199. Handoko M.L., De Man F.S., Happé C.M. et al. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation. 2009; 120 (1): 42–49. DOI: 10.1161/circulationaha.108.829713.
200. Zhai Z., Murphy K., Tighe H. et al. Differences in ventilatory inefficiency between pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Chest. 2011; 140 (5): 1284–1291. DOI: 10.1378/chest.10-3357.
201. Nagel C., Prange F., Guth S. et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS One. 2012; 7 (7): e41603. DOI: 10.1371/journal.pone.0041603.
202. Inagaki T., Terada J., Tanabe N. et al. Home-based pulmonary rehabilitation in patients with inoperable or residual chronic thromboembolic pulmonary hypertension: a preliminary study. Respir. Investig. 2014; 52 (6): 357–364. DOI: 10.1016/j.resinv.2014.07.002.
203. La Rovere M.T., Pinna G.D., Pin M. et al. Exercise training after pulmonary endarterectomy for patients with chronic thromboembolic pulmonary hypertension. Respiration. 2019; 97 (3): 234–241. DOI: 10.1159/000492754.
204. Fukui S., Ogo T., Takaki H. et al. Efficacy of cardiac rehabilitation after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Heart. 2016; 102 (17): 1403–1409. DOI: 10.1136/heartjnl-2015-309230.
205. Opitz I., Kirschner M.B. Molecular research in chronic thromboembolic pulmonary hypertension. Int. J. Mol. Sci. 2019; 20 (3): 784. DOI: 10.3390/ijms20030784.
206. Hemnes A.R., Beck G.J., Newman J.H. et al. PVDOMICS: a multi-center study to improve understanding of pulmonary vascular disease through phenomics. Circ. Res. 2017; 121 (10): 1136–1139. DOI: 10.1161/circresaha.117.311737.
207. Newnham M., South K., Bleda M. et al. The ADAMTS13-VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019; 53 (3): 1801805. DOI: 10.1183/13993003.01805-2018.
208. Heresi G.A., Mey J.T., Bartholomew J.R. et al. Plasma metabolomic profile in chronic thromboembolic pulmonary hypertension. Pulm. Circ. 2020; 10 (1): 2045894019890553. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000865/
209. Madani M.M., Wittine L.M., Auger W.R. et al. Chronic thromboembolic pulmonary hypertension in pediatric patients. J. Thorac. Cardiovasc. Surg. 2011; 141 (3): 624–630. DOI: 10.1016/j.jtcvs.2010.07.010.
210. Kumbasar U., Aypar E., Karagöz T. et al. Pulmonary thromboendarterectomy in pediatric patients: report of three cases. Turk. J. Pediatr. 2018; 60 (5): 604–607. DOI: 10.24953/turkjped.2018.05.023.
211. Verbelen T., Cools B., Fejzic Z. et al. Pulmonary endarterectomy in a 12-year-old boy with multiple comorbidities. Pulm. Circ. 2019; 9 (4): 2045894019886249. DOI: 10.1177/2045894019886249
Рецензия
Для цитирования:
Делькруа М., Торбицки А., Гопалан Д., Ситбон О., Клок Ф.А., Ланг И., Дженкинс Д., Ким Н.Х., Умбер М., Джайс К., Нордеграаф А., Пепке-Заба Д., Брено Ф., Дорфмюллер П., Фадель Э., Гофрани Х., Хупер М., Янса П., Мадани М., Мацубара Х., Ого Т., Д’Армини А., Галие Н., Мейер Б., Коркери П., Месарош Г., Майер Э., Симонно Ж. Доклад ERS по хронической тромбоэмболической легочной гипертензии. Пульмонология. 2022;32(1):13-52. https://doi.org/10.18093/0869-0189-2022-32-1-13-52
For citation:
Delcroix М., Torbicki А., Gopalan D., Sitbon O., Klok F., Lang I., Jenkins D., Kim N., Humbert M., Jais X., Noordegraaf A., Pepke-Zaba J., Brénot P., Dorfmuller P., Fadel E., Ghofrani H., Hoeper M., Jansa P., Madani M., Matsubara H., Ogo T., D’Armini A., Galie N., Meyer B., Corkery P., Meszaros G., Mayer E., Simonneau G. ERS statement on chronic thromboembolic pulmonary hypertension. PULMONOLOGIYA. 2022;32(1):13-52. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-1-13-52