Obstructive sleep apnea syndrome: association of serum melatonin, increased daytime sleepiness, and intermitting night hypoxemia
https://doi.org/10.18093/0869-0189-2021-31-6-768-775
Abstract
The relevance of studies related to the features of respiratory disorders during sleep is undeniable due to the steady growth of the worldwide prevalence of apnea syndrome, which leads to a decrease in quality of life, the risk of early cardiovascular diseases together with cerebrovascular, endocrine, and pulmonary disorders.
The aim of this study was to determine the relationship between the morning serum melatonin, blood oxygen saturation (SрO2), and increased daytime sleepiness in patients with SOAS, as well as to assess changes in the production of endogenous melatonin after eliminating clinical manifestations of nocturnal hypoxemia, through a 3-month course of non-invasive continuous positive airway pressure (CPAP) therapy. The study enrolled 30 male patients who came to the Federal State Public Scientific Institution “Scientific Centre of Family Health and Human Reproduction Problems” because of snoring, sleep apnea, and increased daytime sleepiness.
Methods. Polysomnography, questionnaire, HPLC-MS/MS analysis of serum melatonin levels, CPAP-therapy for the respiratory support at home for 3 months, monitoring of the sleep scores, serum melatonin, and daytime sleepiness after the treatment.
Results. A comparative assessment of the sleep scores before and after the respiratory support for 3 months revealed a significant improvement in sleep structure, elimination of the apnea episodes, and restoration of blood SрO2 after the therapy. Analysis of the serum melatonin vales confirmed a statistically significant increase of melatonin level against baseline in patients with SOAS after the treatment. A correlation analysis showed a relationship between the melatonin level, daytime sleepiness, and blood SрO2.
Conclusion. The results of this study and the data of other researchers demonstrate that the elimination of intermittent nocturnal hypoxia in patients with SOAS allows reducing the morning serum melatonin level, thereby reducing the daytime sleepiness and subsequently improving the quality of life.
Keywords
About the Authors
Irina M. MadaevaRussian Federation
Doctor of Medicine, Somnologist, Chief Researcher, Head об Somnology аnd Neurophysiology Laboratory, Head оf Irkutsk Somnological Center.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (914) 881-41-01
Competing Interests:
no
Nadezhda A. Kurashova
Russian Federation
Doctor of Biology, Leading Researcher, Laboratory of Pathophysiology.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (902) 514-30-28
Competing Interests:
no
Natalya V. Semenova
Russian Federation
Natalya V. Semenova, Doctor of Biology, Leading Researcher, Laboratory of Pathophysiology.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (902) 767-67-44
Competing Interests:
no
Erdem B. Ukhinov
Russian Federation
Neurologist, Neurophysiologist, Epileptologist, Junior Researcher, Laboratory оf Somnology аnd Neurophysiology.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (924) 456-17-01
Competing Interests:
no
O. N. Berdina
Russian Federation
Candidate of Medicine, Leading Researcher, Laboratory of Somnology and Neurophysiology.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (914) 4917-24-12
Competing Interests:
no
Tatyana A. Bairova
Russian Federation
Doctor of Medicine, Leading Researcher, Laboratory of Personalized Medicine.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (902) 576-15-06
Competing Interests:
no
Alexey V. Belskikh
Russian Federation
Candidate of Chemistry, Personalized Medicine Laboratory Engineer.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (914) 890-02-32
Competing Interests:
no
Lyubov I. Kolesnikova
Russian Federation
Doctor of Medicine, Professor, Academician of Russian Academy of Sciences, Scientific Director.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (395) 220-76-36
Competing Interests:
no
Sergey I. Kolesnikov
Russian Federation
Doctor of Medicine, Professor, Academician of Russian Academy of Sciences, Chief Researcher.
Ul. Timiryazevа 16, Irkutsk, 664003; tel.: (395) 220-76-36
Competing Interests:
no
References
1. [Guidelines of the Spanish Society of Pulmonology and Thoracic Surgery on diagnosis and treatment of sleep apnea-hypopnea syndrome]. Pul’monologiya. 2011; (4): 13-28. Available at: https://journal.pulmonology.ru/pulm/article/view/347 (in Russian).
2. Petrosyan M.A., Tovmasyan N.T., Narimanyan M.Z. [Structural and functional heart parameters in patients with obstructive sleep apnea syndrome]. Pul’monologiya. 2015; 25 (6): 698-703. DOI: 10.18093/0869-0189-2015-25-6-698-703 (in Russian).
3. Phillips B. Sleep-disordered breathing and cardiovascular disease. Sleep Med. Rev. 2005; 9 (2): 131-140. DOI: 10.1016/j.smrv.2004.09.007.
4. Nishimura A., Kasai T., Kikuno S. et al. Effect of sleep-disordered breathing on albuminuria in 273 patients with type 2 diabetes. J. Clin. Sleep Med. 2018; 14 (3): 401-407. DOI: 10.5664/jcsm.6986.
5. Berry R.B., Budhiraja R., Gottlieb D.J. et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012; 8 (5): 597-619. DOI: 10.5664/jcsm.2172.
6. Peppard P.E., Young T., Barnet J.H. et al. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013; 177 (9): 1006-1014. DOI: 10.1093/aje/kws342.
7. Ldvy P., Kohler M., McNicholas W.T. et al. Obstructive sleep apnoea syndrome. Nat. Rev. Dis. Primers. 2015; 1: 15015. DOI: 10.1038/nrdp.2015.15.
8. Brown R.E., Basheer R., McKenna J.T. et al. Control of sleep and wakefulness. Physiol. Rev. 2012; 92 (3): 1087-187. DOI: 10.1152/physrev.00032.2011.
9. Arushayan E.B. [Epiphyseal hormone melatonin and neurological pathology]. Russkiy meditsinskiy zhurnal. 2006; 14 (23): 1657-1664. Available at: https://www.rmj.ru/articles/nevrologiya/Epifizarnyy_gormon_melatonin_i_nevrologicheskaya_patologiya/ (in Russian).
10. Bespyatykh A.Yu., Brodskiy V.Ya., Burlakova O.V. et al. [Melatonin: theory and practice]. Moscow: Medpractica-M; 2009 (in Russian).
11. Semenova N.V., Madaeva I.M., Bairova T.A. et al. Association of 3111t/c polymorphism of the clock gene with circadian rhythm of melatonin in menopausal women with insomnia. Bull. Exp. Biol. Med. 2018; 165 (3): 331-333. DOI: 10.1007/s10517-018-4162-2.
12. Sullivan C.E., Issa F.G., Berthon-Jones M., Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981; 1 (8225): 862-865. DOI: 10.1016/s0140-6736(81)92140-1.
13. Patil S.P., Ayappa IA., Caples S.M. et al. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2019; 15 (2): 335-343. DOI: 10.5664/jcsm.7640.
14. Johns M.W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991; 14 (6): 540-545. DOI: 10.1093/sleep/14.6.540.
15. Uehli K., Mehta A.J., Miedinger D. et al. Sleep problems and work injuries: a systematic review and meta-analysis. Sleep Med. Rev. 2014; 18 (1): 61-73. DOI: 10.1016/j.smrv.2013.01.004.
16. Veasey S.C., Davis C.W., Fenik P. et al. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep. 2004; 27 (2): 194-201. DOI: 10.1093/sleep/27.2.194.
17. Zhan G., Fenik P., Practico D. et al. Inducible nitric oxide synthase in long-term intermittent hypoxia: hypersomnolence and brain injury. Am. J. Respir. Crit. Care Med. 2005; 171 (12): 1414-1420. DOI: 10.1164/rccm.200411-1564OC.
18. Dusak A., Ursavas A., Hakyemez B. et al. Correlation between hippocampal volume and excessive daytime sleepiness in obstructive sleep apnea syndrome. Eur. Rev. Med. Pharmacol. Sci. 2013; 17 (9): 1198-1204. Available at: https://www.europeanreview.org/wp/wp-content/uploads/1198-1204.pdf
19. Sforza E., Celle S., Saint-Martin M. et al. Hippocampus volume and subjective sleepiness in older people with sleep-disordered breathing: a preliminary report. J. Sleep Res. 2016; 25 (2): 190-193. DOI: 10.1111/jsr.12367.
20. Silva G.E., Vana K.D., Goodwin J.L. et al. Identification of patients with sleep disordered breathing: comparing the four-variable screening tool, STOP, STOP-Bang, and Epworth sleepiness scales. J. Clin. Sleep Med. 2011; 7 (5): 467-472. DOI: 10.5664/JCSM.1308.
21. Campbell A.J., Neill A.M., Scott D.A.R. Clinical reproducibility of the Epworth sleepiness scale score for patients with suspected sleep apnea. J. Clin. Sleep Med. 2018; 14 (5): 791-795. DOI: 10.5664/jcsm.7108.
22. Omobomi O., Quan S.F. A requiem for the clinical use of the Epworth sleepiness scale. J. Clin. Sleep Med. 2018; 14 (5): 711-712. DOI: 10.5664/jcsm.7086.
23. Nguyen A.T.D., Baltzan M.A., Small D. et al. Clinical reproducibility of the Epworth sleepiness scale. J. Clin. Sleep Med. 2006; 2 (2): 170-174. DOI: 10.5664/jcsm.26512.
24. Campbell A.J., Neill A.M., Scott D.A.R. Clinical Reproducibility of the Epworth sleepiness scale for patients with suspected sleep apnea. J. Clin. Sleep Med. 2018; 14 (5): 791-795. DOI: 10.5664/jcsm.7108.
25. Lipford M.C., Wahner-Roedler D.L., Welsh G.A. et al. Correlation of the Epworth sleepiness scale and sleep-disordered breathing in men and women. J. Clin. Sleep Med. 2019; 15 (1): 33-38. DOI: 10.5664/jcsm.7564.
26. Ciarleglio C.M., Ryckman K., Servick S.V. et al. Genetic differences in human circadian clock genes among worldwide populations. J. Biol. Rhythms. 2008; 23 (4): 330-340. DOI: 10.1177/0748730408320284.
27. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 2018; 175 (16): 3190-3199. DOI: 10.1111/bph.14116.
28. Pandi-Perumal S.R., Srinivasan V., Spence W., Cardinali D.P. Role of the melatonin system in the control of sleep: therapeutic implications. CNSDrugs. 2007; 21 (12): 995-1018. DOI: 10.2165/00023210-200721120-00004.
29. Semenova N.V., Madaeva I.M., Bairova TA. et al. Association of the melatonin circadian rhythms with clock 3111T/C gene polymorphism in Caucasian and Asian menopausal women with insomnia. Chronobiol. Int. 2019; 35 (8): 1066-1076. DOI: 10.1080/07420528.2018.1456447.
30. Agorastos A., Nicolaides N.C., Bozikas V.P. et al. Multilevel interactions of stress and circadian system: implications for traumatic stress. Front. Psychiatry. 2020; 10: 1003. DOI: 10.3389/fpsyt.2019.01003.
31. Barna£ M., Maskey-WarzQchowska M., Bielicki P. et al. Diurnal and nocturnal serum melatonin concentrations after treatment with continuous positive airway pressure in patients with obstructive sleep apnea. Pol. Arch. Intern. Med. 2017; 127 (9): 589-596. DOI: 10.20452/pamw.4062.
32. Hernandez C., Abreu J., Abreu P. et al. Nocturnal melatonin plasma levels in patients with OSAS: the effect of CPAP. Eur. Respir. J. 2007; 30 (3): 496-500. DOI: 10.1183/09031936.00051906.
Review
For citations:
Madaeva I.M., Kurashova N.A., Semenova N.V., Ukhinov E.B., Berdina O.N., Bairova T.A., Belskikh A.V., Kolesnikova L.I., Kolesnikov S.I. Obstructive sleep apnea syndrome: association of serum melatonin, increased daytime sleepiness, and intermitting night hypoxemia. PULMONOLOGIYA. 2021;31(6):768-775. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-6-768-775