Целесообразность и перспективы применения антицитокиновой и иммунокорригирующей терапии у пациентов с хронической обструктивной болезнью легких


https://doi.org/10.18093/0869-0189-2013-0-5-61-69

Полный текст:


Аннотация

Целесообразность и перспективы применения антицитокиновой и иммунокорригирующей терапии у пациентов с хронической обструктивной болезнью легких.


Об авторах

А. Г. Кадушкин
УО "Белорусский государственный медицинский университет"
Беларусь

аспирант кафедры биологической химии 

220116, Республика Беларусь, Минск, пр. Дзержинского, 83. Тел.: (37517) 272-67-88.



А. Д. Таганович
УО "Белорусский государственный медицинский университет"
Беларусь

д. м. н., проф., зав. кафедрой биологической химии 

220116, Республика Беларусь, Минск, пр. Дзержинского, 83. Тел.: (37517) 272-67-64.



Н. Д. Таганович
УО "Белорусский государственный медицинский университет"
Беларусь

к. м. н., доцент кафедры клинической фармакологиии 

220116, Республика Беларусь, Минск, пр. Дзержинского, 83. Тел.: (37517) 207-37-40.



Список литературы

1. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011. http://www.goldcopd.org

2. Gershon A.S., Warner L., Cascagnette P. et al. Lifetime risk of developing chronic obstructive pulmonary disease: a longitudinal population study. Lancet 2011; 378 (9795): 991–996.

3. Архипов В.В. Хроническая обструктивная болезнь легких: фармакоэкономические аспекты. Пульмонология 2010; 4: 99–104.

4. Кадушкин А.Г., Таганович А.Д., Лаптева И.М. Эпидемиологические особенности хронической обструктивной болезни легких у городских жителей Республики Беларусь. Здравоохранение 2013; 7: 21–25.

5. Tee A. A new gold standard – pharmacological interventions of COPD. Singapore Fam. Physician 2013; 39 (2): 15–18.

6. Calverley P.M., Anderson J.A., Celli B. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 2007; 356 (8): 775–789.

7. Drummond M.B., Dasenbrook E.C., Pitz M.W. et al. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. J.A.M.A. 2008; 300 (20): 2407–2416.

8. Nannini L.J., Cates C.J., Lasserson T.J. et al. Combined corticosteroid and long-acting beta-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2007; 4: CD003794.

9. van der Valk P., Monninkhof E., van der Palen J. et al. Effect of discontinuation of inhaled corticosteroids in patients with chronic obstructive pulmonary disease: the COPE study. Am. J. Respir. Crit. Care Med. 2002; 166 (10): 1358–1363.

10. Crim C., Calverley P.M., Anderson J.A. et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur. Respir. J. 2009; 34 (3): 641–647.

11. Barnes P.J. Development of new drugs for COPD. Curr. Med. Chem. 2013; 20 (12): 1531–1540.

12. Kodgule R., Vaidya A., Salvi S. Newer therapies for chronic obstructive pulmonary disease. J. Assoc. Physicians India 2012; 60 (Suppl.): 8–13.

13. de Boer W.I., Yao H., Rahman I. Future therapeutic treatment of COPD: struggle between oxidants and cytokines. Int. J. Chron. Obstruct. Pulm. Dis. 2007; 2 (3): 205–228.

14. Plataki M., Tzortzaki E., Rytila P. et al. Apoptotic mechanisms in the pathogenesis of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2006; 1 (2): 161–171.

15. Кадушкин А.Г., Таганович А.Д. Молекулярно-клеточные механизмы развития хронической обструктивной болезни легких. Воен. мед. журн. 2012; 1: 132–138.

16. Barnes P.J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2009; 41 (6): 631–638.

17. ClinicalTrials.gov. A randomized, double-blind, placebo controlled, exploratory study to assess the safety and efficacy of multiple doses of ACZ885 in chronic obstructive pulmonary disease (COPD) patients. 2011. Accessed 28/08/13 at: http://clinicaltrials.gov/ct2/show/study/NCT00581945

18. Murphy P.M. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin. Hematol. 1997; 34 (4): 311–318.

19. Keatings V.M., Collins P.D., Scott D.M. et al. Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am. J. Respir. Crit. Care Med. 1996; 153 (2): 530–534.

20. Nadel J.A. Role of neutrophil elastase in hypersecretion during COPD exacerbations, and proposed therapies. Chest 2000; 117 (5, Suppl. 2): 386s–389s.

21. Beeh K.M., Kornmann O., Buhl R. et al Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 2003; 123 (4): 1240–1247.

22. Mahler D.A., Huang S., Tabrizi M. et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 2004; 126 (3): 926–934.

23. O'Connor B.J., Leaker B.R., Barnes P.J. et al. Inhibition of LPS-induced neutrophilic inflammation in healthy volunteers [abstract]. Eur. Respir. J. 2007; 30 (Suppl. 1): 209s.

24. Kirsten A.M., Förster K., Radeczky E. et al. The safety and tolerability of twice-daily oral doses of AZD5069, a novel CXCR2 antagonist, in patients with moderate-to-severe COPD. Eur. Respir. J. 2012; 40 (Suppl. 56): 546s.

25. Kanniess F., Khalilieh S., Ludwig&Sengpiel A. et al. SCH 527123, a CXCR2 antagonist, inhibits ozone-induced airway neutrophilia in healthy subjects. Eur. Respir. J. 2007; 30 (Suppl. 1): 209s.

26. Lazaar A.L., Sweeney L.E., MacDonald A.J. et al. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br. J. Clin. Pharmacol. 2011; 72 (2): 282–293.

27. Chapman R.W., Phillips J.E., Hipkin R.W. et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol. Ther. 2009; 121 (1): 55–68.

28. Chung K.F. Cytokines in chronic obstructive pulmonary disease. Eur. Respir. J. 2001; 18 (34): 50s–59s.

29. Chen Y.F., Jobanputra P., Barton P. et al. A systematic review of the effectiveness of adalimumab, etanercept and infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness. Hlth Technol. Assess. 2006; 10 (42): III–IV, XI–XIII, 1–229.

30. Guo Y., Lu N., Bai A. Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: A recent update. Biomed. Res. Int. 2013; 2013: 581631.

31. Matera M.G., Calceta L., Cazzola M. TNF-α inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm. Pharmacol. Ther. 2010; 23 (2): 121–128.

32. Rennard S.I., Fogarty C., Kelsen S. et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2007; 175 (9): 926–934.

33. Moriconi F., Malik I.A., Amanzada A. et al. The anti-TNF-α antibody infliximab indirectly regulates PECAM-1 gene expression in two models of in vitro blood cell activation. Lab. Invest. 2012; 92 (2): 166–177.

34. Dickens J.A., Miller B.E., Edwards L.D. et al. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir. Res. 2011; 12:146.

35. Kim S.Y., Solomon D.H. Tumor necrosis factor blockade and the risk of viral infection. Nature Rev. Rheumatol. 2010; 6 (3): 165–174.

36. de Boer W.I., van Schadewijk A., Sont J.K. et al. Transforming growth factor β1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998; 158 (6): 1951–1957.

37. Wang Q., Usinger W., Nichols B. et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenes. Tissue Repair. 2011; 4 (1): 4.

38. Barnes P.J. New approaches to COPD. Eur. Respir. Rev. 2005; 14 (94): 2–11.

39. Mak J.C., Rousell J., Haddad E.B. et al. Transforming growth factor-β1 inhibits β2-adrenoceptor gene transcription. Naunyn Schmiedeberg,s Arch. Pharmacol. 2000; 362 (6): 520–525.

40. Ishikawa T., Kume H., Kondo M. et al. Inhibitory effects of interferon-gamma on the heterologous desensitization of betaadrenoceptors by transforming growth factor-β1 in tracheal smooth muscle. Clin. Exp. Allergy 2003; 33 (6): 808–815.

41. Takizawa H., Tanaka M., Takami K. et al. Increased expression of transforming growth factor-β1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am. J. Respir. Crit. Care Med. 2001; 163 (6): 1476–1483.

42. Mak J.C., Chan&Yeung M.M., Ho S.P. et al. Elevated plasma TGF-β1 levels in patients with chronic obstructive pulmonary disease. Respir. Med. 2009; 103 (7): 1083–1089.

43. Leung S.Y., Niimi A., Noble A. et al. Effect of transforming growth factor-beta receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J. Pharmacol. Exp. Ther. 2006; 319 (2): 586–594.

44. ClinicalTrials.gov. Open label trial of anti-TGF-beta mab, fresolimumab, in systemic sclerosis – a phase one biomarker trial. 2012. Accessed 28/08/13 at: http://clinicaltrials.gov/ct2/show/NCT01284322

45. ClinicalTrials.gov. A Phase 2, multicenter, double-blind, parallel dosing, randomized study of fresolimumab or placebo in patients with steroid-resistant primary focal segmental glomerulosclerosis. 2013. Accessed 28/08/13 at: http://clinicaltrials.gov/ct2/show/NCT01665391

46. ClinicalTrials.gov. Fresolimumab and radiotherapy in metastatic breast cancer. 2013. Accessed 28/08/13 at: http://clinicaltrials.gov/ct2/show/NCT01401062

47. Privratsky J.R., Newman D.K., Newman P.J. PECAM-1: Conflicts of Interest in Inflammation. Life Sci. 2010; 87 (3–4): 69–82.

48. Blidberg K., Palmberg L., James A. et al. Adhesion molecules in subjects with COPD and healthy non-smokers: a cross sectional parallel group study. Respir. Res. 2013; 14: 47.

49. Takahashi T., Kobayashi S., Fujino N. et al. Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility. Thorax 2012; 67 (12): 1067–1074.

50. Dasgupta B., Chew T., deRoche A. et al. Blocking platelet / endothelial cell adhesion molecule 1 (PECAM) inhibits disease progression and prevents joint erosion in established collagen antibody induced arthritis. Exp. Mol. Pathol. 2010; 88 (1): 210–215.

51. Gumina R.J., el Schultz J., Yao Z. et al. Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation 1996; 94 (12): 3327–3333.

52. Кадушкин А.Г., Таганович А.Д. Роль хемокинов в патогенезе хронической обструктивной болезни легких. Мед. журн. 2012; 2: 139–144.

53. Кадушкин А.Г., Шман Т.В., Белевцев М.В. и др. Популяционная перестройка Т-лимфоцитов, содержащих хемокиновые рецепторы, у пациентов с хронической обструктивной болезнью легких. Пульмонология 2013; 2: 41–45.

54. O'Boyle G., Fox C.R., Walden H.R. et al. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation. Proc. Natl Acad. Sci. USA 2012; 109 (12): 4598–4603.

55. Vinet J., van Zwam M., Dijkstra I.M. et al. Inhibition of CXCR3-mediated chemotaxis by the human chemokine receptor-like protein CCX-CKR. Br. J. Pharmacol. 2013; 168 (6): 1375–1387.

56. Yellin M., Paliienko I., Balanescu A. et al. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human antiCXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthr. and Rheum. 2012; 64 (6): 1730–1739.

57. Romero&Sanchez M.C., Machmach K., Gonzalez&Serna A. et al. Effect of maraviroc on HIV disease progression-related biomarkers. Antimicrob. Agents Chemother. 2012; 56 (11): 5858–5864.

58. Gilliam B.L., Riedel D.J., Redfield R.R. Clinical use of CCR5 inhibitors in HIV and beyond. J. Transl. Med. 2011; 9 (Suppl. 1): 9s.

59. van Kuijk A.W., Vergunst C.E., Gerlag D.M. et al. CCR5 blockade in rheumatoid arthritis: a randomised, doubleblind, placebo-controlled clinical trial. Ann. Rheum. Dis. 2010; 69 (11): 2013–2016.

60. de Groot M., Teunissen M.B., Ortonne J.P. et al. Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor. Arch. Dermatol. Res. 2007; 299 (7): 305–313.

61. Liu S.F., Chin C.H., Wang C.C. et al. Correlation between serum biomarkers and BODE index in patients with stable COPD. Respirology 2009; 14 (7): 999–1004.

62. Traves S.L., Culpitt S.V., Russell R.E. et al. Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax 2002; 57 (7): 590–595.

63. de Boer W.I., Sont J.K., van Schadewijk A. et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J. Pathol. 2000; 190 (5): 619–626.

64. Xia M., Sui Z. Recent developments in CCR2 antagonists. Expert Opin. Ther. Path. 2009; 19 (3): 295–303.

65. Ralainirina N., Poli A., Michel T. Control of NK cell functions by CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 2007; 81 (1): 144–153.

66. Кадушкин А.Г., Шман Т.В., Новиков В.П. и др. Особенности количественного изменения регуляторных T-лимфоцитов у пациентов с хронической обструктивной болезнью легких. Пульмонология 2013; 3: 25–30.

67. Miyara M., Yoshioka Y., Kitoh A. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30 (6): 899–911.

68. Hou J., Sun Y., Hao Y. et al. Imbalance between subpopulations of regulatory T cells in COPD. Thorax 2013. doi: 10.1136/thoraxjnl-2012-201956.

69. Abdullah M., Chai P.S., Loh C.Y. et al. Carica papaya increases regulatory T cells and reduces IFN-γ+ CD4+ T-cells in healthy human subjects. Mol. Nutr. Food Res. 2011; 55 (5): 803–806.

70. Wong C.P., Nguyen L.P., Noh S.K. et al. Induction of regulatory T cells by green tea polyphenol EGCG. Immunol. Lett. 2011; 139 (1–2): 7–13.

71. Lane N., Robins R.A., Corne J. Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin. Sci. 2010; 119 (2): 75–86.

72. Louten J., Boniface K., de Waal Malefyt R. Development and function of TH17 cells in health and disease. J. Allergy Clin. Immunol. 2009; 123 (5): 1004–1011.

73. Jones C.E., Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte- colony-stimulating factor by human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2002; 26 (6): 748–753.

74. Kao C.Y., Huang F., Chen Y. et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-in-dependent but MEK/NF-kappaB-dependent signaling pathway. J. Immunol. 2005; 175 (10): 6676–6685.

75. Chen Y., Thai P., Zhao Y.H. et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine / autocrine loop. J. Biol. Chem. 2003; 278 (19): 17036–17043.

76. Hong S.C., Lee S.H. Role of Th17 cell and autoimmunity in chronic obstructive pulmonary disease. Immune Netw. 2010; 10 (4): 109–114.

77. Vargas&Rojas M.I., Ramirez&Venegas A., Limon&Camacho L. et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir. Med. 2011; 105 (11): 1648–1654.

78. Zhang L., Cheng Z., Liu W. et al. Expression of interleukin (IL)-10, IL-17A and IL-22 in serum and sputum of stable chronic obstructive pulmonary disease patients. COPD 2013; 10 (4): 459–465.

79. Toussirot E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm. Allergy Drug Targets 2012; 11 (2): 159–168.

80. Насонов Е.Л., Денисов Л.Н., Станислав М.Л. и др. Перспективы фармакотерапии ревматоидного артрита: моноклональные антитела. Науч.-практич. ревматол. 2012; 52 (3): 75–82.

81. Leonardi C.L., Kimball A.B., Papp K.A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008; 371 (9625): 1665–1674.

82. Papp K.A., Langley R.G., Lebwohl M. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008; 371 (9625): 1675–1684.

83. Aujla S.J., Chan Y.R., Zheng M. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Med. 2008; 14 (3): 275–281.

84. Salvi S.S., Barnes P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374 (9691): 733–743.

85. Serapinas D., Narbekovas A., Juskevicius J. et al. Systemic inflammation in COPD in relation to smoking status. Multidiscip. Respir. Med. 2011; 6 (4): 214–219.


Дополнительные файлы

Для цитирования: Кадушкин А.Г., Таганович А.Д., Таганович Н.Д. Целесообразность и перспективы применения антицитокиновой и иммунокорригирующей терапии у пациентов с хронической обструктивной болезнью легких.  Пульмонология. 2013;(5):61-69. https://doi.org/10.18093/0869-0189-2013-0-5-61-69

For citation: Kadushkin A.G., Taganovich A.D., Taganovich N.D. Reasonability and perspectives of anti-cytokine and immune correcting therapy in patients with chronic obstructive pulmonary disease. Russian Pulmonology. 2013;(5):61-69. (In Russ.) https://doi.org/10.18093/0869-0189-2013-0-5-61-69

Просмотров: 229

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)