Preview

PULMONOLOGIYA

Advanced search

On the prospects for the use of thiamine, pyridoxine, and cyanocobalamin in the complex therapy and rehabilitation of patients with COVID-19

https://doi.org/10.18093/0869-0189-2021-31-3-355-363

Abstract

The new coronavirus infection COVID-19 has highlighted the importance of ongoing support for innate antiviral immunity systems. The aim. Conduct a systematic review of publications on the research of the use of B vitamins to support immunity and rehabilitation of patients with COVID-19. Methods. Intelligent analysis of so-called Big Data and special computational methods for analyzing Big Data of biomedical publications, based on the topological theory of sentiment analysis of medical texts from PubMed/MEDLINE. Results. Low levels of B vitamins contribute to chronic comorbidities and aggravate the clinical course of COVID-19 significantly. Increasing the supply of B vitamins in COVID-19 patients is essential for the maintenance of energy and oxygen metabolism; the direct antiviral effects of vitamins (reduction of SARS-CoV-2 replication); compensation of chronic comorbidities (thromboembolism, impaired liver and kidney functions, diabetes mellitus, polyneuropathy), which aggravate the course of COVID-19; reducing hyperhomocysteinemia and chronic aseptic inflammation; inhibiting carbonic anhydrases to improve oxygen metabolism in the lungs, and increasing the clearance of lactate from the blood and preventing sepsis. Conclusion. By improving myelination of the olfactory sensory neurons, vitamin B12 can help overcome anosmia, which occurs in 80% of COVID-19 patients. Short courses (up to 2 – 3 weeks) of high-dose parenteral therapy with thiamine, pyridoxine, and cyanocobalamin can be used as a part of a complex of therapeutic measures to improve clinical outcomes in patients with COVID-19, especially in elderly patients with polyhypovitaminosis, diabetes mellitus, hyperhomocysteinemia, thrombophilia, and high risk of sepsis. Oral therapy with thiamine, pyridoxine, and cyanocobalamin is justified as a part of rehabilitation measures after COVID-19 in patients who have faced its consequences in the form of clinical signs of vitamin B vitamin deficiency.

About the Authors

O. A. Gromova
Institute of Pharmacoinformatics, Federal Research Center “Informatics and Control”, Russian Academy of Sciences; Center for storing and analyzing big data, National Center for Digital Economy, Moscow State University M.V. Lomonosov
Russian Federation

Olga A. Gromova, Doctor of Medicine, Professor, Leading Researcher, Institute of Pharmacoinformatics, Federal Research Center “Informatics and Control”, Russian Academy of Sciences; Leading Researcher, Department of Intelligent Systems, Center for storing and analyzing big data, National Center for Digital Economy, Moscow State University M.V.Lomonosov. SPIN: 6317-9833, Author ID: 94901, Author ID: 7003589812, WOS ID: J-4946-2017

ul. Vavilova 44, build. 2, Moscow, 119333
Leninskie Gory 1, Moscow, 119991
tel.: (916) 108-09-03



I. Yu. Torshin
Institute of Pharmacoinformatics, Federal Research Center “Informatics and Control”, Russian Academy of Sciences; Center for storing and analyzing big data, National Center for Digital Economy, Moscow State University M.V. Lomonosov
Russian Federation

Ivan Yu. Torshin, Candidate of Physics & Mathematics, Candidate of Chemistry, Senior Researcher, Department of Intellectual Systems, Institute of Pharmacoinformatics, Federal Research Center “Informatics and Control”, Russian Academy of Sciences, Academic Advisor, Center for storing and analyzing big data, National Center for Digital Economy, Moscow State University M.V.Lomonosov. Author ID: 7003300274, SPIN: 1375-1114, Author ID: 54104, WOS ID: C-7683-2018

ul. Vavilova 44, build. 2, Moscow, 119333
Leninskie Gory 1, Moscow, 119991
tel.: (499) 135-24-89



A. G. Chuchalin
Pirogov Russian National Research Medical University (Pirogov Medical University)
Russian Federation

Alexander G. Chuchalin, Doctor of Medicine, Professor, Academician of Russian Academy of Sciences, Head of Department of Hospital Internal Medicine, Pediatric Faculty

ul. Ostrovityanova 1, Moscow, 117997
tel.: (499) 780-08-50



References

1. Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020; 12 (4): 1181. DOI: 10.3390/nu12041181.

2. Gromova O.A., Torshin I.Yu., Gusev E.I. [Synergistic neuroprotective effects of thiamine, pyridoxine and cyanocobalamin on the level of human proteome]. Pharmacokinetics and рharmacodynamics. 2017; (1): 40–51. Available at: https://www.pharmacokinetica.ru/jour/article/view/7/7 (in Russian).

3. Shakoor H., Feehan J., Mikkelsen K. et al. Be well: A potential role for vitamin B in COVID-19. Maturitas. 2021; 144: 108–111. DOI: 10.1016/j.maturitas.2020.08.007.

4. Hamer D.H., Sempertegui F., Estrella B. et al. Micronutrient deficiencies are associated with impaired immune response and higher burden of respiratory infections in elderly Ecuadorians. J. Nutr. 2009; 139 (1): 113–119. DOI: 10.3945/jn.108.095091.

5. Thaller G. [Vitamin B 12 in the prevention of influenza]. Munch Med. Wochenschr. 1957; 99 (52): 1977–1978 (in German).

6. Axelrod A.E., Hopper S. Effects of pantothenic acid, pyridoxine and thiamine deficiencies upon antibody formation to influenza virus PR-8 in rats. J. Nutr. 1960; 72 (3): 325–330. DOI: 10.1093/jn/72.3.325.

7. Chang H.Y., Tang F.Y., Chen D.Y. et al. Clinical use of cyclooxygenase inhibitors impairs vitamin B-6 metabolism. Am. J. Clin. Nutr. 2013; 98 (6): 1440–1449. DOI: 10.3945/ajcn.113.064477.

8. Gromova O.A., Rebrov V.G. [Vitamins, macro- and microelements. Educational programs of the RSC of the UNESCO Institute of Microelements]. Moscow: GEOTAR-Media; 2008 (in Russian).

9. Gromova O.A., Torshin I.Yu., Shapovalova Yu.O. et al. [COVID-19 and iron deficiency anemia: relationships of pathogenesis and therapy]. Akusherstvo, ginekologiya i reproduktsiya. 2020; 14 (5): 654–665. DOI: 10.17749/2313-7347/ob.gyn.rep.2020.179 (in Russian).

10. Maiorova L.A., Erokhina S.I., Pisani M. et al. Encapsulation of vitamin B 12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf. B Biointerfaces. 2019; 182: 110366. DOI: 10.1016/j.colsurfb.2019.110366.

11. Narayanan N., Nair D.T. Vitamin B 12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 virus. IUBMB Life. 2020; 72 (10): 2112–2120. DOI: 10.1002/iub.2359.

12. Barbieri A., Robinson N., Palma G. et al. Can beta-2-adrenergic pathway be a new target to combat SARS-CoV-2 hyperinflammatory syndrome? – Lessons learned from cancer. Front. Immunol. 2020; 11: 588724. DOI: 10.3389/fimmu.2020.588724.

13. Vatsalya V., Li F., Frimodig J.C. et al. Therapeutic prospects for Th-17 cell immune storm syndrome and neurological symptoms in COVID-19: thiamine efficacy and safety, in-vitro evidence and pharmacokinetic profile. medRxiv. 2020: 2020.08.23.20177501 [Preprint. Posted: August 25, 2020]. DOI: 10.1101/2020.08.23.20177501.

14. Torshin I.Yu., Gromova O.A. [Micronutrients against coronaviruses]. Chuchalin A.G. (ed.). Moscow: GEOTAR-Media; 2020 (in Russian).

15. Uckun F.M., Carlson J., Orhan C. et al. Rejuveinix shows a favorable clinical safety profile in human subjects and exhibits potent preclinical protective activity in the lipopolysaccharide-galactosamine mouse model of acute respiratory distress syndrome and multi-organ failure. Front. Pharmacol. 2020; 11: 594321. DOI: 10.3389/fphar.2020.594321.

16. Procter B.C., Ross C., Pickard V. et al. Clinical outcomes after early ambulatory multidrug therapy for high-risk SARS-CoV-2 (COVID-19) infection. Rev. Cardiovasc. Med. 2020; 21 (4): 611–614. DOI: 10.31083/j.rcm.2020.04.260.

17. Tan C.W., Ho L.P., Kalimuddin S. et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B 12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020; 79–80: 111017. DOI: 10.1016/j.nut.2020.111017.

18. Gromova O.A., Torshin I.Yu., Lisitsyna E.Yu. [Hepatoprotective properties of vitamins in preconception and during pregnancy]. Zemskiy vrach. 2011; (4): 23–28. Available at: https://cyberleninka.ru/article/n/gepatoprotektornye-svoystva-vitaminov-v-prekontseptsii-i-pri-beremennosti/viewer (in Russian).

19. Hernandez-Vazquez A.J., Garcia-Sanchez J.A., Moreno-Arriola E. et al. Thiamine deprivation produces a liver ATP deficit and metabolic and genomic effects in mice: Findings are parallel to those of biotin deficiency and have implications for energy disorders. J. Nutrigenet. Nutrigenomics. 2016; 9 (5-6): 287–299. DOI: 10.1159/000456663.

20. Levy S., Herve C., Delacoux E., Erlinger S. Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig. Dis. Sci. 2002; 47 (3): 543–548. DOI: 10.1023/a:1017907817423.

21. Butterworth R.F. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab. Brain. Dis. 2009; 24 (1): 189–196. DOI: 10.1007/s11011-008-9129-y.

22. Wang C., Liang J., Zhang C. et al. Effect of ascorbic Acid and thiamine supplementation at different concentrations on lead toxicity in liver. Ann. Occup. Hyg. 2007; 51 (6): 563–569. DOI: 10.1093/annhyg/mem036.

23. Zhao M., Ralat M.A., da Silva V. et al. Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells. Am. J. Physiol. Endocrinol. Metab. 2013; 304 (4): e342–351. DOI: 10.1152/ajpendo.00359.2012.

24. Cheng C.P., Chen C.H., Kuo C.S. et al. Dietary choline and folate relationships with serum hepatic inflammatory injury markers in Taiwanese adults. Asia Pac. J. Clin. Nutr. 2017; 26 (4): 642–649. DOI: 10.6133/apjcn.082016.03.

25. Hirsch S., Poniachick J., Avendano M. et al. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition. 2005; 21 (2): 137–141. DOI: 10.1016/j.nut.2004.03.022.

26. Harb Z., Deckert V., Bressenot A.M. et al. The deficit in folate and vitamin B 12 triggers liver macrovesicular steatosis and inflammation in rats with dextran sodium sulfate-induced colitis. J. Nutr. Biochem. 2020; 84: 108415. DOI: 10.1016/j.jnutbio.2020.108415.

27. Veber D., Mutti E., Tacchini L. et al. Indirect down-regulation of nuclear NF-kappaB levels by cobalamin in the spinal cord and liver of the rat. J. Neurosci. Res. 2008; 86 (6): 1380–1387. DOI: 10.1002/jnr.21599.

28. Isoda K., Kagaya N., Akamatsu S. et al. Hepatoprotective effect of vitamin B 12 on dimethylnitrosamine-induced liver injury. Biol. Pharm. Bull. 2008; 31 (2): 309–311. DOI: 10.1248/bpb.31.309.

29. Xia M.F., Bian H., Zhu X.P. et al. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin. Nutr. 2018; 37 (5): 1752–1758. DOI: 10.1016/j.clnu.2017.06.021.

30. Koplay M., Gulcan E., Ozkan F. Association between serum vitamin B 12 levels and the degree of steatosis in patients with nonalcoholic fatty liver disease. J. Investig. Med. 2011; 59 (7): 1137–1140. DOI: 10.2310/JIM.0b013e31822a29f5.

31. van Kempen T.A.T.G., Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am. J. Physiol. Endocrinol. Metab. 2021; 320 (1): e2–6. DOI: 10.1152/ajpendo.00474.2020.

32. Sato K., Morofuji Y., Horie N. et al. Hyperhomocysteinemia causes severe intraoperative thrombotic tendency in superficial temporal artery-middle cerebral artery bypass. J. Stroke Cerebrovasc. Dis. 2020; 29 (5): 104633. DOI: 10.1016/j.jstrokecerebrovasdis.2019.104633.

33. Zhou K., Zhao R., Geng Z. et al. Association between B-group vitamins and venous thrombosis: systematic review and meta-analysis of epidemiological studies. J. Thromb. Thrombolysis. 2012; 34 (4): 459–467. DOI: 10.1007/s11239-012-0759-x.

34. Taheraghdam A.A., Dalirakbari N., Khalili M. et al. Hyperhomocysteinemia, low vitamin B12, and low folic acid: Are risk factors of cerebral vascular thrombosis in northwest Iran? J. Res. Med. Sci. 2016; 21: 16. DOI: 10.4103/1735-1995.178755.

35. Kotwal J., Kotwal A., Bhalla S. et al. Effectiveness of homocysteine lowering vitamins in prevention of thrombotic tendency at high altitude area: A randomized field trial. Thromb. Res. 2015; 136 (4): 758–762. DOI: 10.1016/j.thromres.2015.08.001.

36. Pereira E.N.G.D.S., Silvares R.R., Flores E.E.I. et al. Pyridoxamine improves metabolic and microcirculatory complications associated with nonalcoholic fatty liver disease. Microcirculation. 2020; 27 (3): e12603. DOI: 10.1111/micc.12603.

37. Vučković B.A., van Rein N., Cannegieter S.C. et al. Vitamin supplementation on the risk of venous thrombosis: results from the MEGA case-control study. Am. J. Clin. Nutr. 2015; 101 (3): 606–612. DOI: 10.3945/ajcn.114.095398.

38. Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol. 2020; 108: 104821. DOI: 10.1016/j.oraloncology.2020.104821.

39. Wee A.K.H. COVID-19's toll on the elderly and those with diabetes mellitus – Is vitamin B 12 deficiency an accomplice? Med. Hypotheses. 2021; 146: 110374. DOI: 10.1016/j.mehy.2020.110374.

40. Gonçalves S.E.A.B., Gonçalves T.J.M., Guarnieri A. et al. Association between thiamine deficiency and hyperlactatemia among critically ill patients with diabetes infected by SARS-CoV-2. J. Diabetes. 2021; 13 (5): 413–419. DOI: 10.1111/1753-0407.13156.

41. Li W., Li K., Zhang N. et al. [Differential diagnosis of high altitude pulmonary edema and COVID-19 with computed tomography feature]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020; 37 (6): 1031–1036. DOI: 10.7507/1001-5515.202007043 (in Chinese).

42. Maggiorini M. [Prevention and therapy of altitude sickness]. Ther. Umsch. 1993; 50 (4): 221–227 (in German).

43. Schöni M.H. [Inhibition of renal carbonic anhydrase as a respiratory stimulant – an obsolete indication?] Ther. Umsch. 2000; 57 (6): 351–354. DOI: 10.1024/0040-5930.57.6.351 (in German).

44. Williams M.H. Vitamin supplementation and athletic performance. Int. J. Vitam. Nutr. Res. Suppl. 1989; 30: 163–191.

45. Harris S.C., Ivy A.C., Friedemann T.E. Work at high altitude; the effect of training and dietary restriction of thiamin and riboflavin on altitude tolerance and physical efficiency for work at a simulated altitude of 15,000 feet. Q. Bull. Northwest Univ. Med. Sch. 1947 Summer; 21 (2): 135–151.

46. Özdemir Z.Ö., Şentürk M., Ekinci D. Inhibition of mammalian carbonic anhydrase isoforms I, II and VI with thiamine and thiamine-like molecules. J. Enzyme Inhib. Med. Chem. 2013; 28 (2): 316–319. DOI: 10.3109/14756366.2011.637200.

47. McPeake J.M., Shaw M., O'Neill A. et al. Do alcohol use disorders impact on long term outcomes from intensive care? Crit. Care. 2015; 19 (1): 185. DOI: 10.1186/s13054-015-0909-6.

48. Lima L.F., Leite H.P., Taddei J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am. J. Clin. Nutr. 2011; 93 (1): 57–61. DOI: 10.3945/ajcn.2009.29078.

49. Woolum J.A., Abner E.L., Kelly A. et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit. Care Med. 2018; 46 (11): 1747–1752. DOI: 10.1097/CCM.0000000000003311.

50. Byerly S., Parreco J.P., Soe-Lin H. et al. Vitamin C and thiamine are associated with lower mortality in sepsis. J. Trauma Acute Care Surg. 2020; 89 (1): 111–117. DOI: 10.1097/TA.0000000000002613.

51. Marik P.E., Khangoora V., Rivera R. et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151 (6): 1229–1238. DOI: 10.1016/j.chest.2016.11.036.

52. Derin S., Koseoglu S., Sahin C., Sahan M. Effect of vitamin B12 deficiency on olfactory function. Int. Forum Allergy Rhinol. 2016; 6 (10): 1051–1055. DOI: 10.1002/alr.21790.

53. Gromova O.A., Torshin I.Yu., Semenov V.A. et al. [Direct and indirect neurological manifestations of COVID-19]. Zhurnal nevrologii i psikhiatrii im. S.S.Korsakova. 2020; 120 (11): 11–21. DOI: 10.17116/jnevro202012011111 (in Russian).

54. Zaric D., Christiansen C., Pace N.L., Punjasawadwong Y. Transient neurologic symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics. Cochrane Database Syst. Rev. 2003; (2): CD003006. DOI: 10.1002/14651858.CD003006.


Review

For citations:


Gromova O.A., Torshin I.Yu., Chuchalin A.G. On the prospects for the use of thiamine, pyridoxine, and cyanocobalamin in the complex therapy and rehabilitation of patients with COVID-19. PULMONOLOGIYA. 2021;31(3):355-363. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-3-355-363

Views: 3409


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)