Preview

PULMONOLOGIYA

Advanced search

Targeted therapy for cystic fibrosis

https://doi.org/10.18093/0869-0189-2021-31-2-226-236

Abstract

The basic therapy of cystic fibrosis is currently aimed at slowing down the pathological processes associated with a decrease in the CFTR protein activity (cystic fibrosis transmembrane conductance regulator) in the gastrointestinal tract and the respiratory system. The pancreatic insufficiency is well compensated by replacement therapy with microsphere enzyme preparations and a high-calorie diet rich in proteins and fat. Chronic treatment of cystic fibrosis-related lung disease aims to improve the clearance of the bronchial tree, suppressing chronic bacterial infection and local chronic inflammation. However, no therapy was available to correct the defect in the gene or its product until 2012.

The aim was to analyze literature on CFTR modulators, including their efficacy and safety, and assess the potential for developing new modulators to treat cystic fibrosis.

Materials. The review included literature data (45 publications) on the use of CFTR modulators and international websites’ data.

Results. Since the discovery of the CFTR gene in 1989, more than 2000 mutations or variants of the CFTR gene (hereinafter referred to as genetic variants) have been described. They interfere with the synthesis of the CFTR protein, its transport to the apical membrane of the cell, or disrupt its function as a channel for chloride anions. Although it is currently not possible to completely replace the mutant gene with a normal copy, small molecules have been identified that can modify the mutant CFTR protein and amend its function. The potential therapeutic measures are determined by class of the mutation. In clinical practice, pharmacological modeling of ion transport is currently possible only with the use of CFTR modulators: correctors and potentiators. The review defines these groups of drugs and describes 4 licensed CFTR modulators, including molecules of ivacaftor, lumacaftor, tezacaftor, elexacaftor. The data on the promising emerging next generation modulators and the prospects for the personalized selection of drugs using the assays on intestinal organoids are presented.

About the Authors

S. I. Kutsev
Federal State Budgetary Scientific Institution “Research Center for Medical Genetics”
Russian Federation

Sergey I. Kutsev, Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Director.

ul. Moskvorech’e 1, Moscow, 1115478, Russia; tel.: (499) 612-00-37


Competing Interests:

The authors did not declare any conflicts of interest



V. L. Izhevskaya
Federal State Budgetary Scientific Institution “Research Center for Medical Genetics”
Russian Federation

Vera L. Izhevskaya, Doctor of Medicine, Deputy Director for Science.

ul. Moskvorech’e 1, Moscow, 1115478, Russia; tel.: (495) 324-15-34


Competing Interests:

The authors did not declare any conflicts of interest



E. I. Kondratyeva
Federal State Budgetary Scientific Institution “Research Center for Medical Genetics”
Russian Federation

Elena I. Kondratyeva, Doctor of Medicine, Professor, Head of the Scientific and Clinical Department of Cystic Fibrosis.

ul. Moskvorech’e 1, Moscow, 1115478, Russia; tel.: (495) 111-03-03


Competing Interests:

The authors did not declare any conflicts of interest



References

1. Kashirskaya N.Yu., Krasovsky S.A., Chernyak A.V. et al. [Trends in life expectancy of cystic fibrosis patients in moscow and their connection with the treatment received: retrospective analysis for 1993–2013]. Voprosy sovremennoy pediatrii. 2015; 14 (4): 503–508. DOI: 10.15690/vsp.v14.i4.1390 (in Russian).

2. Jentsch T.J., Maritzen T., Zdebik A.A. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J. Clin. Invest. 2005; 115 (8): 2039–2046. DOI: 10.1172/JCI25470.

3. Kogan I., Ramjeesingh M., Li C. et al. CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J. 2003; 22 (9): 1981–1989. DOI: 10.1093/emboj/cdg194.

4. Ivashchenko T.E., Baranov V.S. B. [Biochemical and moleculargenetic foundations of the pathogenesis of cystic fibrosis]. St. Petersburg: Intermedika; 2002 (in Russian).

5. Gus’kova A.A., Skoblov M.Yu., Baranova A.V. [The life and death of the CFTR protein]. Meditsinskaya genetika. 2007; 6 (2): 3–9 (in Russian).

6. De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020; 109 (5): 893–899. DOI: 10.1111/apa.15155.

7. Lopes-Pacheco M. CFTR modulators: Shedding light on precision medicine for cystic fibrosis. Front. Pharmacol. 2016; 7: 275. DOI: 10.3389/fphar.2016.00275.

8. Flume P.A., Van Devanter D.R. State of progress in treating cystic fibrosis respiratory disease. BMC Med. 2012 10, 88. DOI: 10.1186/1741-7015-10-88.

9. Kerem E. Mutation specific therapy in CF. Paediatr. Respir. Rev. 2006; 7 (Suppl. 1): 166–169. DOI: 10.1016/j.prrv.2006.04.213.

10. Proesmans M., Vermeulen F., De Boeck K. What’s new in cystic fibrosis? From treating symptoms to correction of the basic defect. Eur. J. Pediatr. 2008; 167 (8): 839–849. DOI: 10.1007/s00431-008-0693-2.

11. Amaral M.D. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J. Internal. Med. 2015; 277 (2): 155–166. DOI: 10.1111/joim.12314.

12. Mall M.A., Mayer-Hamblett N., Rowe S.M. Cystic fibrosis: Emergence of highly effective targeted therapeutics and potential clinical implications. Am. J. Respir. Crit. Care Med. 2020; 201 (10): 1193–1208. DOI: 10.1164/rccm.201910-1943SO.

13. Fajac I., Wainwright C.E. New treatments targeting the basic defects in cystic fibrosis. Press. Med. 2017; 46 (6, Pt 2): e165–175. DOI: 10.1016/j.lpm.2017.01.024.

14. Rowe S.M., Miller S., Sorscher E.J. Cystic fibrosis. N. Engl. J. Med. 2005; 352 (19): 1992–2001. DOI: 10.1056/NEJMra043184.

15. Kuk K., Taylor-Cousar J.L. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects. Ther. Adv. Respir. Dis. 2015; 9 (6): 313–326. DOI: 10.1177/1753465815601934.

16. Van Goor F., Hadida S., Grootenhuis P.D.J. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA. 2009; 106 (44): 18825–18830. DOI: 10.1073/pnas.0904709106.

17. Ramsey B.W., Davies J., McElvaney N.G. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011; 365 (18):1663–1672. DOI: 10.1056/NEJMoa1105185.

18. Flume P.A., Liou T.G., Borowitz D.S. et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012; 142 (3): 718–724. DOI: 10.1378/chest.11-2672.

19. Van Goor F., Hadida S., Grootenhuis P.D.J. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA. 2011; 108 (46): 18843–18848. DOI: 10.1073/pnas.1105787108.

20. Cain C. Cystic fibrosis two-step. SciBX. 2012; 5: 192. DOI: 10.1038/scibx.2012.192.

21. ClinicalTrials.gov. Study of VX-809 alone and in combination with VX-770 in cystic fibrosis (CF) patients homozygous or heterozygous for the F508del-CFTR mutation. Available at: http://clinicaltrials.gov/ct2/show/NCT01225211?term=ivacaftor&intr=ivacaftor&rank=4

22. ClinicalTrials.gov. Study of VX-661 alone and in combination with ivacaftor in subjects homozygous or heterozygous to the f508del-cystic fibrosis transmembrane conductance regulator (CFTR) Mutation. Available at: http://clinicaltrials.gov/ct2/show/NCT01531673?term=ivacaftor&intr=ivacaftor&rank=2

23. Boyle M.P., Bell S.C., Konstan M.W. et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir. Med. 2014; 2 (7): 527–538. DOI: 10.1016/S2213-2600(14)70132-8.

24. Wainwright C.E., Elborn J.S., Ramsey B.W. et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for phe508del CFTR. N. Engl. J. Med. 2015; 373 (3): 220–231. DOI: 10.1056/NEJMoa1409547.

25. Shaw M., Khan U., Clancy J.P. et al. Changes in LCI in F508del/F508del patients treated with lumacaftor/ ivacaftor: Results from the prospect study. J. Cyst. Fibros. 2020; 19 (6): 931–933. DOI: 10.1016/j.jcf.2020.05.010.

26. Stanojevic S., Davis S.D., Retsch-Bogart G. et al. Progression of lung disease in preschool patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2017; 195 (9): 1216–1225. DOI: 10.1164/rccm.201610-2158OC.

27. Ratjen F., Hug C., Marigowda G. et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6–11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2017; 5 (7): 557–567. DOI: 10.1016/S2213-2600(17)30215-1.

28. Burgel P.R., Durieu I., Chiron R. et al. Clinical response to lumacaftor–ivacaftor in patients with cystic fibrosis according to baseline lung function. J. Cyst. Fibros. [Preprint. Posted 2020, Jun. 23]. S1569-1993(20)30752-9. DOI: 10.1016/j.jcf.2020.06.012.

29. Taylor-Cousar J.L., Munck A., McKone E.F. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 2017; 377(21): 2013–2023. DOI: 10.1056/NEJMoa1709846.

30. Clancy J.P., Cotton C.U., Donaldson S.H. et al. CFTR modulator theratyping: Current status, gaps and future directions. J. Cyst. Fibros. 2019; 18 (1): 22–34. DOI: 10.1016/j.jcf.2018.05.004.

31. Southern K.W., Patel S., Sinha I.P., Nevitt S.J. Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis. Cochrane Database Syst. Rev. Intervention Version published: 2018; 8 (8): CD010966. DOI: 10.1002/14651858.CD010966.pub2.

32. Schwarz C., Sutharsan S., Epaud R. et al. Tezacaftor/ ivacaftor in people with cystic fibrosis who stopped lumacaftor/ivacaftor due to respiratory adverse events. J. Cyst. Fibros. [Preprint. Posted 2020, Jun. 23]. S1569-1993(20)30730-X. DOI: 10.1016/j.jcf.2020.06.001.

33. Munck A., Kerem E., Ellemunter H. et al. Tezacaftor/ ivacaftor in people with cystic fibrosis heterozygous for minimal function CFTR mutations. J. Cyst. Fibros. 2020; 19 (6): 962–968. DOI: 10.1016/j.jcf.2020.04.015.

34. Middleton P.G., Mall M.A., Dřevínek P. et al. Elexacaftor– tezacaftor–ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 2019; 381 (19): 1809–1819. DOI: 10.1056/NEJMoa1908639.

35. Mainz J.G., Arnold C., Hentschel J., Tabori H. Effects of ivacaftor in three pediatric siblings with cystic fibrosis carrying the mutations G551D and F508del. Arch. Bronconeumol. 2018; 54 (4): 232–234. DOI: 10.1016/j.arbr.2017.09.013.

36. Megalaa R., Gopalareddy V., Champion E., Goralski J.L. Time for a gut check: Pancreatic sufficiency resulting from CFTR modulator use. Pediatr. Pulmonol. 2019; 54 (8): e16–18. DOI: 10.1002/ppul.24353.

37. Nichols A.L., Davies J.C., Jones D., Carr S.B. Restoration of exocrine pancreatic function in older children with cystic fibrosis on ivacaftor. Paediatr. Respir. Rev. 2020; 35: 99–102. DOI: 10.1016/j.prrv.2020.04.003.

38. Misgault B., Chatron E., Reynaud Q. et.al. Effect of one-year lumacaftor–ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients. J. Cyst. Fibros. 2020; 19 (5): 712–716. DOI: 10.1016/j.jcf.2020.03.002.

39. Bailey J., Rozga M., McDonald C.M. et al. Effect of CFTR modulators on anthropometric parameters in individuals with cystic fibrosis: an evidence analysis center systematic review. J. Acad. Nutr. Diet. [Preprint. Posted 2020, Jun. 09]. S2212-2672(20)30301-4. DOI: 10.1016/j.jand.2020.03.014.

40. Giuliano K.A., Wachi S., Drew L. et al. Use of a high-throughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discov. 2018; 23 (2): 111–121. DOI: 10.1177/2472555217729790.

41. Li H., Valkenier H., Thorne A.G. et al. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chemical Sci. 2019; 10 (42): 9663–9672. DOI: 10.1039/C9SC04242C.

42. Dekkers J.F., Wiegerinck C.L., de Jonge H.R. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 2013; 19 (7): 939–945. DOI: 10.1038/nm.3201.

43. Beekman J.M. Individualized medicine using intestinal responses to CFTR potentiators and correctors. Pediatr. Pulmonol. 2016; 51 (Suppl. 44): S23–34. DOI: 10.1002/ppul.23553.

44. Dekkers J.F., van der Ent C.K., Beekman J.M. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis. 2013; 1 (1): e27112. DOI: 10.4161/rdis.27112.

45. Boj S.F., Vonk A.M., Statia M. et al. Forskolin-induced swelling in intestinal organoids: An in vitro assay for assessing drug response in cystic fibrosis patients. J. Vis. Exp. 2017; (120): 55159. DOI: 10.3791/55159.

46. Wilschanski M., Yahav Y., Yaakov Y. et al. Gentamicin- induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 2003; 349 (15): 1433–1441. DOI: 10.1056/NEJMoa022170.


Review

For citations:


Kutsev S.I., Izhevskaya V.L., Kondratyeva E.I. Targeted therapy for cystic fibrosis. PULMONOLOGIYA. 2021;31(2):226-236. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-2-226-236

Views: 4765


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)