Preview

Пульмонология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Механизмы развития лекарственной устойчивости Mycobacterium tuberculosis: есть ли шанс победить?

https://doi.org/10.18093/0869-0189-2021-31-1-100-108

Полный текст:

Аннотация

В научном аналитическом обзоре представлена актуальная информация о современном эпидемиологическом статусе по туберкулезу в нашей стране и мире, генетической приспосабливаемости и эволюционировании Mycobacterium tuberculosis. Описаны известные и недавно открытые молекулярные мишени агрессии данного микроорганизма, представлены возможные методические приемы обхода невосприимчивости микобактерии туберкулеза (МБТ) к существующим и разрабатываемым препаратам. Целью обзора явилось формирование представления о принципах развития механизмов лекарственной резистентности МБТ, а также способах, позволяющих их преодолеть, с возможностью дальнейшей проработки выбранного направления с привлечением авторитетных научных групп и практической реализацией. Материалы и методы. Научный анализ высокоиндексированных международных докладов, статей и клинических протоколов. Результаты. Выделены критические биологические маркеры невосприимчивости M. tuberculosis к противотуберкулезной терапии, которые защищают от фармакологического вмешательства со стороны человека и не позволяют адекватно санировать очаги воспаления в организме больного. Предложены способы дезинтеграции механизмов лекарственной резистентности, что позволит вывести алгоритмы лечения туберкулезной инфекции на новый уровень. Заключение. С учетом изученных молекулярных индикаторов сопротивляемости к стандартизированным и разрабатываемым лекарственным препаратам полученные результаты анализа информации о важности реализации персонализированного подхода в оказании медицинской помощи фтизиатрическим пациентам позволят углубить и расширить кругозор специалистов, участвующих в борьбе с туберкулезом.

Об авторах

А. Г. Наумов
Приволжский исследовательский медицинский университет Министерства здравоохранения Российской Федерации
Россия

Наумов Алексей Георгиевич - ассистент кафедры фтизиатрии имени И.С. Николаева.
603005, Нижний Новгород, пл. Минина и Пожарского, 10 / 1.
тел.: (831) 432-85-92


Конфликт интересов: Авторы заявляют об отсутствии потенциального конфликта интересов.


А. В. Павлунин
Приволжский исследовательский медицинский университет Министерства здравоохранения Российской Федерации
Россия

Павлунин Александр Васильевич - доктор медицинских наук, профессор, заведующий кафедрой фтизиатрии имени И.С. Николаева.
603005, Нижний Новгород, пл. Минина и Пожарского, 10 / 1.
тел.: (831) 432-85-92


Конфликт интересов: Авторы заявляют об отсутствии потенциального конфликта интересов.


Список литературы

1. Hameed H.M.A., Islam M.M., Chnotaray C. et al. Molecular targets related drug resistance mechanism in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol. 2018; 8: 114. DOI: 10.3389/fcimb.2018.00114.

2. WHO. Global tuberculosis report 2018. Geneva: World Health Organization; 2018. Available at: https://apps.who.int/iris/handle/10665/274453.

3. Нечаева О.Б. Эпидемиологическая ситуация по туберкулезу в России. Туберкулез и болезни легких. 2018; 96 (8): 5-24. DOI: 10.21292/2075-1230-2018-96-8-15-24.

4. Lewis M.J., Sloan D.J. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther. Clin. Risk Manag. 2015; 11: 779-791. DOI: 10.2147/TCRM.S71076.

5. Нечаева О.Б. Эпидемическая ситуация по туберкулезу в России. ЦНИИ организации и информатизации здравоохранения. Аналитические обзоры по туберкулезу. Данные за 2016 год. Доступно на: https://old.mednet.ru/ru/czentr-monitoringa-tuberkuleza/produkcziya-czentra/analiticheskie-obzory.html

6. Нечаева О.Б. Эпидемическая ситуация по туберкулезу в России. ЦНИИ организации и информатизации здравоохранения. Аналитические обзоры по туберкулезу. Данные за 2017 год. Доступно на: https://old.mednet.ru/ru/czentr-monitoringa-tuberkuleza/produkcziya-czentra/analiticheskie-obzory.html

7. Нечаева О.Б. Основные показатели по туберкулезу в Российской Федерации. ЦНИИ организации и информатизации здравоохранения. Аналитические обзоры по туберкулезу. Данные за 2017 год. Доступно на: https://old.mednet.ru/ru/czentr-monitoringa-tuberkuleza/produkcziya-czentra/analiticheskie-obzory.html

8. Palomino J.C., Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel). 2014; 3 (3): 317-340. DOI: 10.3390/antibiotics3030317.

9. Roca I., Akova M., Baquero F. et al. The goal threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015; 6: 22-29. DOI: 10.1016/j.nmni.2015.02.007.

10. Furin J., Brigden G., Lessem E. et al. Global progress and challenges in implementing new medications for treating multidrug-resistant tuberculosis. Emerg. Infect. Dis. 2016; 22 (3): e151430. DOI: 10.3201/eid2203.151430.

11. de Vos M., Muller B., Borrell S. et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 2013; 52 (2): 827-832. DOI: 10.1128/AAC.01541-12.

12. McGrath M., Gey van Pittus N.C., van Heiden P.D. et al. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014; 69 (2): 292-302. DOI: 10.1093/jac/dkt364.

13. Dalton T., Cegielski P., Akksilp S. et al. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet. 2012; 380 (9851): 1406-1417. DOI: 10.1016/S0140-6736(12)60734-X.

14. Machado D., Couto I., Perdigao J. et al. Contribution of eff lux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One. 2012; 7 (4): e34538. DOI: 10.1371/journal.pone.0034538.

15. Zhang Y., Yew W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int. J. Tuberc. Lung Dis. 2015; 19 (11): 1276-1289. DOI: 10.5588/ijtld.15.0389.

16. Perdigao J., Macedo R., Machado D. et al. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal. Clin. Microbiol. infect. 2014; 20 (5): 278-284. DOI: 10.1111/1469-0691.12392.

17. Campbell P.J., Morlock G.P., Sikes R.D. et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2011; 55 (5): 2032-2041. DOI: 10.1128/AAC.01550-10.

18. Machado D., Perdigao J., Ramos J. et al. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J. Antimicrob. Chemother. 2013; 68 (8): 1728-1732. DOI: 10.1093/jac/dkt090.

19. Grant S.S., Wellington S., Kawate T. et al. Baeyer-Villiger monooxygenases EthA and MymA are required for activation of replicating and non-replicating Mycobacterium tuberculosis inhibitors. Cell Chem. Biol. 2016; 23 (6): 666-677. DOI: 10.1016/j.chembiol.2016.05.011.

20. Mori G., Chiarelli L.R., Riccardi G., Pasca M.R. New prodrugs against tuberculosis. Drug Discov. Today. 2017; 22 (3): 519-525. DOI: 10.1016/j.drudis.2016.09.006.

21. Zhang S., Chen J., Shi W. et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2013; 2 (1): e34. DOI: 10.1038/emi.2013.38.

22. Shi W., Chen J., Feng J. et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014; 3 (1): e58. DOI: 10.1038/emi.2014.61.

23. Njire M., Tan Y., Mugweru J. et al. Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv. Med. Sci. 2016; 61 (1): 63-71. DOI: 10.1016/j.advms.2015.09.007.

24. Xia Q., Zhao L.L., Li F. et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Zhejiang, China. Antimicrob. Agents Chemother. 2015; 59 (3): 1690-1695. DOI: 10.1128/AAC.04541-14.

25. Xu P., Wu J., Yang C. et al. Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China. Tuberculosis (Edinb.). 2016; 98: 56-61. DOI: 10.1016/j.tube.2016.02.008.

26. Yoon J.H., Nam J.S., Kim K.J., Ro Y.T. Simple and rapid discrimination of embB codon 306 mutations in Mycobacterium tuberculosis clinical isolates by a real-time PCR assay using an LNA-TaqMan probe. J. Microbiol. Methods. 2013; 92 (3): 301-306. DOI: 10.1016/j.mimet.2012.12.014.

27. Moure R., Espanol M., Tudb G. et al. Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. J. Antimicrob. Chemother. 2014; 69 (4): 947-954. DOI: 10.1093/jac/dkt448.

28. Tye G.J., Lew M.H., Choong Y.S. et al. Vaccines for TB: Lessons from the past translating into future potentials. J. Immunol. Res. 2005; 2015: 916780. DOI: 10.1155/2015/916780.

29. Safi H., Lingaraju S., Amin A. et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-e-D-arabinose biosynthetic and utilization pathway genes. Nat. Genet. 2013; 45 (10): 1190-1197. DOI: 10.1038/ng.2743.

30. He L., Wang X., Cui P. et al. UbiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb.). 2015; 95 (2): 149-154. DOI: 10.1016/j.tube.2014.12.002.

31. Ocheretina O., Escuyer V.E., Mabou M.M. et al. Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results. PLoS One. 2014; 9 (3): e90569. DOI: 10.1371/journal.pone.0090569.

32. Thirumurugan R., Kathirvel M., Vallayyachari K. et al. Molecular analysis of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates by multiple allele specific polymerase chain reaction in Puducherry, South India. J. Infect. Public Health. 2015; 8 (6): 619-625. DOI: 10.1016/j.jiph.2015.05.003.

33. Mboowa G., Namaganda C., Ssengooba W. Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert® MTB/RIF in Kampala, Uganda: a retrospective study. BMC Infect. Dis. 2014; 14: 481. DOI: 10.1186/1471-2334-14-481.

34. Comas I., Borrell S., Roetzer A. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 2012; 44 (1): 106-110. DOI: 10.1038/ng.1038.

35. Brandis G., Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J. Antimicrob. Chemother. 2013; 68 (11): 2493-2497. DOI: 10.1093/jac/dkt224.

36. Lata M., Sharma D., Kumar B. et al. Proteome analysis of ofloxacin and moxifloxacin induced mycobacterium tuberculosis isolates by proteomic approach. Protein Pept. Lett. 2015; 22 (4): 362-371. DOI: 10.2174/0929866522666150209113708.

37. Alvarez N., Zapata E., Mejia G.l. et al. The structural modeling of the interaction between levofloxacin and the Mycobacterium tuberculosis gyrase catalytic site sheds light on the mechanisms of fluoroquinolones resistant tuberculosis in Colombian clinical isolates. Biomed Res. Int. 2014; 2014: 367268. DOI: 10.1155/2014/367268.

38. Zheng J., Rubin E.J., Bifani P. et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem. 2013; 288 (32): 23447-23456. DOI: 10.1074/jbc.M113.475798.

39. Meumann E.M., Globan M., Fyfe J.A. et al. Genome sequence comparisons of serial multi-drug-resistant Mycobacterium tuberculosis isolates over 21 years of infection in a single patient. Microb. Genom. 2015; 1 (5): e000037. DOI: 10.1099/mgen.0.000037.

40. Zhao F., Wang X.D., Erber L.N. et al. Binding pocket alterations in dihydrofolate synthase confer resistance to paraaminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014; 58 (3): 1479-1487. DOI: 10.1128/AAC.01775-13.

41. Prosser G.A., de Carvalho L.P. Metabolomics reveal D-ala-nine:D-alanine ligase as the target of D-cycloserine in Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013; 4 (12): 1233-1237. DOI: 10.1021/ml400349n.

42. Chen J.M., Uplekar S., Gordon S.V., Cole S.T. A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One.2012; 7 (8): e43467. DOI: 10.1371/journal.pone.0043467.

43. Desjardins C.A., Cohen K.A., Munsamy V. et al. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat. Genet. 2016; 48 (5): 544-551. DOI: 10.1038/ng.3548.

44. Makafe G.G., Cao Y., Tan Y. et al. Role of the Cys154Arg substitution in ribosomal protein L3 in oxazolidinone resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2016; 60 (5): 3202-3206. DOI: 10.1128/AAC.00152-16.

45. Zhang S., Chen J., Cui P. et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob. Agents Chemother. 2016; 60 (4): 2542-2544. DOI: 10.1128/AAC.02941-15.

46. Islam M.M., Hameed H.M.A., Mugweru J. et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics. 2017; 44 (1): 21-37. DOI: 10.1016/j.jgg.2016.10.002.

47. Segala E., Sougakoff W., Nevejans-Chauffour A. et al. New mutations in the mycobacterial ATP synthase: New insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob. Agents Chemother. 2012; 56 (5): 2326-2334. DOI: 10.1128/AAC.06154-11.

48. Bloemberg G.V., Keller P.M., Stucki D. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med. 2015; 373 (20): 1986-1988. DOI: 10.1056/NEJMc1505196.

49. Tahlan K., Wilson R., Kastrinsky D.B. et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomyco-late involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012; 56 (4): 1797-1809. DOI: 10.1128/AAC.05708-11.

50. Li W., Upadhyay A., Fontes F.L. et al. Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014; 58 (11): 6413-6423. DOI: 10.1128/AAC.03229-14.

51. Makarov V., Lechartier B., Zhang M. et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med. 2014; 6 (3): 372-383. DOI: 10.1002/emmm.201303575.

52. Kolly G.S., Boldrin F., Sala C. et al. Assessing the essentiality of the decaprenyl-phospho-D-arabinofuranose pathway in Mycobacterium tuberculosis using conditional mutants. Mol. Microbiol. 2014; 92 (1): 194-211. DOI: 10.1111/mmi.12546.

53. Sala C., Hartkoorn R.C. Tuberculosis drugs: new candidates and how to find more. Future Microbiol. 2011; 6 (6): 617-633. DOI: 10.2217/fmb.11.46.

54. Lechartier B., Rybniker J., Zumla A., Cole S. Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol. Med. 2014; 6 (2): 158-168. DOI: 10.1002/emmm.201201772.

55. Cooper C.B. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents. J. Med. Chem. 2013; 56 (20): 7755-7760. DOI: 10.1021/jm400381v.

56. Прозоров А.А., Федорова И.А., Беккер О.Б., Даниленко В.Н. Факторы вирулентности Mycobacterium tuberculosis: генетический контроль, новые концепции. Генетика. 2014; 50 (8): 885-908. DOI: 10.7868/S0016675814080050.

57. Cousin C., Derouiche A., Shi L. et al. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 2013; 346 (1): 11-19. DOI: 10.1111/1574-6968.12189.

58. Forrellad M.A., Klepp L.I., Gioffre A. et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013; 4 (1): 3-66. DOI: 10.4161/viru.22329.

59. Canova M.J., Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J. Biol. Chem. 2014; 289 (14): 9473-9479. DOI: 10.1074/jbc.R113.529917.

60. Puckett S., Trujillo C., Wang Z. et al. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 2017; 114 (11): e2225-2232. DOI: 10.1073/pnas.1617655114.


Для цитирования:


Наумов А.Г., Павлунин А.В. Механизмы развития лекарственной устойчивости Mycobacterium tuberculosis: есть ли шанс победить? Пульмонология. 2021;31(1):100-108. https://doi.org/10.18093/0869-0189-2021-31-1-100-108

For citation:


Naumov A.G., Pavlunin A.V. Mechanisms of development of medicine stability Mycobacterium tuberculosis: is there a chance to win? PULMONOLOGIYA. 2021;31(1):100-108. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-1-100-108

Просмотров: 284


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)