Расширенный поиск

Наномедицина: современные подходы к диагностике и лечению заболеваний, вопросы безопасности

Полный текст:

Об авторе

М. В. Самсонова
ФГУ НИИ пульмонологии ФМБА России

Список литературы

1. Gwinn M.R., Vallyathan V. Nanoparticles: Health effects pros and cons. Environm. Hlth Perspect. 2006.; 114 (12): 1818–1825.

2. Emerich D.F., Thanos C.G. Nanotechnology and medicine. Expert. Opin. Biol. Ther. 2003; 3 (4): 655–663.

3. Freitas R.A. Nanotechnology, Nanomedicine and Nanosurgery. 2006.

4. Obataya I., Nakamura C., Han S. et al. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Letters 2005; 5 (1): 27–30.

5. Obataya I., Nakamura C., Han S. et al. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic forcemicroscopy. Biosensors and Bioelectronics 2005; 20 (8): 1652–1655.

6. Tirlapur U.K., Konig K. Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J. 2002; 31 (3): 365–374.

7. Konig K. Robert Feulgen Prize lecture. Laser tweezers and multiphoton microscopes in life sciences. Histochem. Cell Biol. 2000; 114 (2): 79–92.

8. Allen J.W., Bhatia S.N. Engineering liver therapies for the future. Tissue Enging 2002; 8 (5): 725–737.

9. Morawski A.M., Lanza G.A., Wickline S.A. Targeted contast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 2005; 16 (1): 89–92.

10. Lim Y.T., Kim S., Nakayama A. et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2003; 2: 50–64.

11. Gao X., Cui Y., Levenson R.M. et al. In vivo cancer targeting and imaging with semiconductor guantum dots. Nat. Biotechnol. 2004; 22: 969–976.

12. Schmieder A.H., Winter P.M., Caruthers S.D. et al. Molecular MR imaging of melanoma angiogenesis with a (nu)p(3)-targeted paramagnetic nanoparticles. Magn. Reson. Med. 2005; 53 (3): 621–627.

13. Smith A.M., Gao X., Nie S. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem. Photobiol. 2004; 80: 377–385.

14. Wu X., Liu H., Liu J. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003; 21: 41–46.

15. Smith A.M., Nie S. Chemical analysis and cellular imaging with quantum dots. Analyst. 2004; 129: 672–677.

16. Jaiswal J.K., Goldman E.R., Mattoussi H., Simon S.M. Use of quantum dots for live cell imaging. Nat. Methods. 2004; 1: 73–78.

17. Han M., Gao X., Su J.Z., Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001; 19: 631–635.

18. Ghoroghchian P.P., Frail P.R., Susumu K. et al. Nearinfrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. USA 2005; 102: 2922–2927.

19. Petri-Fink A., Chastellain M., Juillerat0Jeanneret L. et al. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005; 26: 2685–2694.

20. Georganopoulou D.G., Chang L., Nam J.M. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 2005; 102: 2273–2276.

21. Nam J.M., Thaxton C.S., Mirkin C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003; 301: 1884–1886.

22. Liotta L.A., Ferrari M., Petricoin E. Clinical proteomics: written in blood. Nature 2003; 425: 905.

23. Moghimi S.M., Hunter A.C., Murray J.C. Nanomedicine: current status and future prospects. FASEB J. 2005; 19 (3): 311–330.

24. Hood J.D., Bednarski M., Frausto R. et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296: 2404–2407.

25. Farokhzad О.С., Jon S., Khademhosseini A. et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer. Res. 2004; 64: 7668–7672.

26. Wissing S.A., Kayser O., Muller R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004; 56: 1257–1272.

27. O'Neal D.P., Hirsch L.R., Halas N.J. et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer. Lett. 2004; 209: 171–176.

28. Gao X., Chan W.C., Nie S. Quantum dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 2002; 7: 532–537.

29. Warheit D.B. Nanoparticles: health impacts? Materials Today 2004; 7 (2): 32–35.

30. Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science 2006; 311 (5761): 622–627.

31. Haberzettl C.A. Nanomedicine: destination or journey? Nanotechnology 2002; 13 (4): R9–R13.

32. Chiu W., Burnett R.M., Garcea R. Structural biology of viruses. New York: Oxford University Press; 1997.

33. Dragnea B. et al. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J. Am. Chem. Soc. 2003; 125: 6374–6375.

34. Aoyama Y. Macrocyclic glycoclusters: from amphiphiles through nanoparticles to glycoviruses. Chemistry 2004; 10: 588–593.

35. Valanne A. et al. A sensitive adenovirus immunoassay as a model for using nanoparticle label technology in vims diagnostics. J. Clin. Virol. 2005; 33: 217–223.

36. Wang Y.F. et al. Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. J. Med. Virol. 2003; 70: 205–211.

37. Perez J.M., Josephson L., Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem. 2004; 5: 261–264.

38. Locher C.P. et al. Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol. Lett. 2003; 90: 67–70.

39. Shephard M.J. et al. Immunogeniciry of bovine parainfluenza type 3 virus proteins encapsulated in nanoparticle vaccines, following intranasal administration to mice. Res. Vet. Sci. 2003; 74: 187–190.

40. Burnouf T., Radosevich M. Nanofiltration of plasma-derived bio-pharmaceutical products. Haemophilia 2003; 9: 24–37.

41. Zharov V.P. et al. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nano-therapy. Nanomedicine 2005; 1: 326–345.

42. Hilger I. et al. Magnetic thermotherapy of breast tumors: an experimental therapeutic approach. Röfo 2005; 177: 507–515.

43. Hinds W.C. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd ed. New York: Wiley-Interscience; 1999.

44. Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Hlth 2001; 74 (1): 1–8.

45. Gong H. Jr., Linn W.S., Clark K.W. et al. Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal. Toxicol. 2005; 17 (3): 123–132.

46. Koenig J.Q., Mar T.F., Allen R.W. et al. Pulmonary effects of indoorand outdoor-generated particles in children with asthma. Environ. Hlth Perspect. 2005; 113: 499–503.

47. Geiser M., Rothen0Rutishauser B., Kapp N. et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Hlth Perspect. 2005; 113: 1555–1560.

48. Dick C.A., Brown D.M., Donaldson K., Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol. 2003; 15 (1): 39–52.

49. Donaldson K., Tran C.L. Inflammation caused by particles and fibers. Inhal. Toxicol. 2002; 14 (1): 5–27.

50. Oberdorster G., Gelein R.M., Ferin J., Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal. Toxicol. 1995; 7 (1): 111–124.

51. Sayes C.M., Gobin A.M., Ausman K.D. et al. Nano-C(60) cytotoxicity is due to lipid peroxidation. Biomaterials 2005; 26: 7587–7595.

52. Cui D., Tian F., Ozkan C.S. et al. Effect of single wall carbon nanotubes on human HЕК293 cells. Toxicol. Lett. 2005; 155: 73–85.

53. Jia G., Wang H., Yan L. et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005; 39: 1378–1383.

54. Shvedova A.A., Castranova V., Kisin E.R. et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Hlth A 2003; 66: 1909–1926.

55. Brown D.M., Wilson M.R., MacNee W. et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001; 175: 191–199.

56. Li N., Sioutas C., Cho A. et al. Ultrafine paniculate pollutants induce oxidative stress and mitochondrial damage. Environ. Hlth Perspect. 2003; 111: 455–460.

57. Oberdorster G., Sharp Z., Atudorei V. et al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004; 16: 437–445.

58. Muller J., Huaux F., Moreau N. et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 2005; 207: 221–231.

59. Shvedova A.A., Kisin E.R., Mercer R. et al. Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2005; 283: L698–L708.

60. De Kozak Y., Andrieux K., Villarroya H. et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 2004; 34: 3702–3712.

61. Ho C., Hitchens T.K. A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ. Curr. Pharm. Biotechnol. 2004; 5: 551–566.

62. Kagan V.E., Gleiss B., Tvurina Y.Y. et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 2002; 169: 487–499.

63. Fadok V.A., Bratton D.L., Frasch S.C. et al. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998; 5: 551–562.

64. Henson P.M. Possible roles for apoptosis and apoptotic cell recognition in inflammation and fibrosis. Am. J. Respir. Cell Mol. Biol. 2003; 29: S70–S76.

65. Oberdorster G., Ferin J., Lehnert B.E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Hlth Perspect. 1994; 102 (suppl. 5): 173–179.

66. Ebbesen M., Jensen T. Nanomedicine: techniques, potentials, and ethical implications. J. Biomed. Biotechnol. 2006; 2006 (5): 51516.

67. Lam C.W., James J.T., McCluskey R., Hunter R.L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004; 77 (1): 126–134.

68. Колесников С.И., Ткач А.В. Нанотехнологии и наноматериалы – значение для медицины и правовое обеспечение безопасности их производства и применения. Жизнь без опасности 2007; 3 (2): 22–33.


Для цитирования:

Самсонова М.В. Наномедицина: современные подходы к диагностике и лечению заболеваний, вопросы безопасности. Пульмонология. 2008;(5):5-13.

For citation:

Samsonova M.V. Nanomedicine: current approach to diagnosis and treatment of diseases and safety issues. PULMONOLOGIYA. 2008;(5):5-13. (In Russ.)

Просмотров: 241

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.

ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)