Preview

Пульмонология

Расширенный поиск

Субпопуляции В-лимфоцитов и влияние микроокружения на их функциональную активность

https://doi.org/10.18093/0869-0189-2010-5-116-123

Полный текст:

Об авторах

И. Н. Дьяков
Лаборатория биосинтеза иммуноглобулинов УРАМН "НИИ вакцин и сывороток им. И.И.Мечникова РАМН"
Россия


Е. В. Сидорова
Лаборатория биосинтеза иммуноглобулинов УРАМН "НИИ вакцин и сывороток им. И.И.Мечникова РАМН"
Россия


Список литературы

1. Murphy K., Travers P., Walport M. et al. Janeway's immuno- biology. 7th ed. New York; London: Garland scienсe; 2008.

2. Сидорова Е.В. Что нам известно сегодня о В-клетках. Успехи соврем. биол. 2006; 3: 227-241.

3. Caligaris+Cappio F., Gobbi M., Bofill M. et al. Infrequent normal B lymphocytes express features of B-chronic lym phocytic leukemia. J. Exp. Med. 1982; 155: 623-628.

4. Hayakawa K., Hardy R.R., Parks D.R. et al. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med. 1983; 157 (1): 202-218.

5. Casali P., Burastero S.E., Nakamura M. et al. Human lym phocytes making rheumatoid factor and antibody to ssDNA belong to Leu1+ B cell subset. Science 1987; 236: 77-81.

6. Dauphinee M., Tovar Z., Talal N. B cells expressing CD5 are increased in Sjogren's syndrome. Arthr. and Rheum. 1988; 31: 642-647.

7. Hardy R.R., Hayakawa K., Shimizu M. et al. Rheumatoid factor secretion from human Leu1 B cells. Science 1987; 236: 81-83.

8. Masmoudi H., Mota+Santos T., Huetz F. et al. All T15 Id-positive antibodies (but not the majority of VHT15 anti- bodies) are produced by peritoneal CD5+ B lymphocytes. Int. Immunol. 1990; 2: 515-520.

9. Kantor A. A new nomenclature for B cells. Immunol. Today 1991; 12: 388.

10. Stall A.M., Adams S., Herzenberg L.A. et al. Characteristics and development of the murine B1b (Ly1 B sister) cell population. Ann. N. Y. Acad. Sci. 1992; 651: 33-43.

11. Pospisil R., Mage R.G. CD5 and other superantigens as 'tick lers' of the Bcell receptor. Immunol. Today 1998; 19 (3): 106-108.

12. Thiriot A., Drapier A.M., Vieira P. et al. The Bw cells, a novel B cell population conserved in the whole genus Mus. J. Immunol. 2007; 179 (10): 6568-6578.

13. Hardy R.R., Hayakawa K. A developmental switch in B lym phopoiesis. Proc. Natl. Acad. Sci. USA 1991; 88: 11550-11554.

14. Сидорова Е.В. Субпопуляции В лимфоцитов и их функ циональная роль. Успехи соврем. биол. 2002; 122 (5): 467-479.

15. Cong Y.Z., Rabin E., Wortis H.H. Treatment of murine CD5- B cells with antiIg, but not LPS, induces surface CD5: two B cell activation pathways. Int. Immunol. 1991; 3: 467-476.

16. Lam K.P., Rajewsky K. B cell antigen receptor specificity and surface density together determine B1 versus B2 cell development. J. Exp. Med. 1999; 190; 471-477.

17. Montecino+Rodriguez E., Leathers H., Dorshkind K. Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 2006; 7 (3): 293-301.

18. Tung J.W., Mrazek M.D., Yang Y. et al. Phenotypically dis tinct B cell development pathways map to the three B cell lineages in the mouse. Proc. Natl. Acad. Sci. USA 2006; 103 (16): 6293-6298.

19. Pinho Mde F., Hurtado S.P., El+Cheikh M.C. et al. Haemopoietic progenitors in the adult mouse omentum: permanent production of B lymphocytes and monocytes. Cell Tissue Res. 2005; 319 (1): 91-102.

20. Düber S., Hafner M., Krey M. et al. Induction of B-cell development in adult mice reveals the ability of bone mar- row to produce B1a cells. Blood 2009; 114 (24): 4960-4967.

21. Esplin B.L., Welner R.S., Zhang Q. et al. A differentiation pathway for B1 cells in adult bone marrow. Proc. Natl. Acad. Sci. USA 2009; 106 (14): 5773-5778.

22. Lortan J., Gray D., Kumararatne D.S. et al. Regulation of the size of the recirculating B cell pool of adult rats. Adv. Exp. Med. Biol. 1985; 186: 593-601.

23. Martin F., Kearney J.F. Marginal zone B cells. Nat. Rev. Immunol. 2002; 2: 323-335.

24. Kumararatne D.S., Gagnon R.F., Smart Y. Selective loss of large lymphocytes from the marginal zone of the white pulp in rat spleens following a single dose of cyclophosphamide. A study using quantitative histological methods. Immuno logy 1980; 40: 123-131.

25. Hardy R.R. B1 B cell development. J. Immunol. 2006; 177 (5): 2749-2754.

26. Brandtzaeg P, Johansen F.E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol. Rev. 2005; 206: 32-63.

27. Fujihashi K., McGhee J.R., Yamamoto M. et al. Role of gamma delta T cells in the regulation of mucosal IgA response and oral tolerance. Ann. N. Y. Acad. Sci. 1996; 778: 55-63.

28. Moser B., Eberl M. γδT cells: novel initiators of adaptive immunity. Immunol. Rev. 2007; 215: 89-102.

29. Guinamard R., Okigaki M., Schlessinger J. et al. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 2000; 1; 31-36.

30. Wells S.M., Kantor A.B., Stall A.M. CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol. 1994; 153 (12): 5503-5515.

31. Hastings W.D., Gurdak S.M., Tumang J.R. et al. CD5+ / Mac-1-peritoneal B cells: a novel B cell subset that exhibits characteristics of B1 cells. Immunol. Lett. 2006; 105 (1): 90-96.

32. Chumley M.J., Dal Porto J.M., Cambier J.C. The unique antigen receptor signaling phenotype of B-1 cells is influ enced by locale but induced by antigen. J. Immunol. 2002; 169 (4); 1735-1743.

33. Tumang J.R., Hastings W.D., Bai C. et al. Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics. Eur. J. Immunol. 2004; 34 (8): 2158-2167.

34. Ansel K.M., Harris R.B., Cyster J.G. CXCL13 is required for B1 cell homing, natural antibody production, and body cav ity immunity. Immunity 2002; 16; 67-76.

35. Fischer G.M., Solt L.A., Hastings W.D. et al. Splenic and peritoneal B-1 cells differ in terms of transcriptional and proliferative features that separate peritoneal B1 from splenic B2 cells. Cell. Immunol. 2001; 213; 62-71.

36. Ohdan H., Swenson K.G., Kruger Gray H.S. et al. Mac-1- negative B-1b phenotype of natural antibody-producing cells, including those responding to Gal alpha 1,3 Gal epi topes in alpha 1,3-galactosyltransferase-deficient mice. J. Immunol. 2000; 165 (10): 5518-5529.

37. Kretschmer K., Jungebloud A., Stopkowicz J. et al. Antibody repertoire and gene expression profile: Implications for dif ferent developmental and functional traits of splenic and peritoneal B-1 lymphocytes. J. Immunol. 2003; 171: 1192-1201.

38. Prior L., Pierson S., Woodland R.T. et al. Rapid restoration of B-cell function in XID mice by intravenous transfer of peritoneal cavity B cells. Immunology 1994; 83: 180-183.

39. Дьяков И.Н., Гаврилова М.В., Чернышова И.Н. и др. Вли яние микроокружения на функциональную активность Влимфоцитов мыши. Биол. мембраны 2008; 25 (5): 360-366.

40. Дьяков И.Н., Григорьев И.В., Сидорова Е.В. и др. Функ циональная активность В-клеток мыши. Роль микро- окружения. Мед. иммунол. 2008; 10 (1): 51-58.

41. Hastings W.D., Tumang J.R., Behrens T.W. et al. Peritoneal B-2 cells comprise a distinct B-2 cell population with B-1b- like characteristics. Eur. J. Immunol. 2006; 36 (5): 1114-1123.

42. Berenson C.S., Ryan J.L. Murine peritoneal macrophage gangliosides inhibit lymphocyte proliferation. J. Leukoc. Biol. 1991; 50 (4): 393-401.

43. Chace J.H., Fleming A.L., Gordon J.A. et al. Regulation of differentiation of peritoneal B-1a (CD5+) B cells. Activated peritoneal macrophages release prostaglandin E2, which inhibits IgM secretion by peritoneal B1a cells. J. Immunol. 1995; 154 (11): 5630-5636.

44. Tanaka F., Tominaga K., Shiota M. et al. Interleukin10 gene transfer to peritoneal mesothelial cells suppresses peri- toneal dissemination of gastric cancer cells due to a persist ently high concentration in the peritoneal cavity. Cancer Gene Ther. 2008; 15 (1): 51-59.

45. Popi A.F., Lopes J.D., Mariano M. Interleukin10 secreted by B-1 cells modulates the phagocytic activity of murine macrophages in vitro. Immunology 2004; 113 (3): 348-354.

46. Brandtzaeg P., Farstad I.N., Johansen F+E. et al. The Bcell system of human mucosae and exocrine glands. Immunol. Rev. 1999; 171: 45-87.

47. Kroese F.G., Butcher E.C., Stall A.M. et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1989; 1: 75-84.

48. Roy B., Shukla S., Lyszkiewicz M. et al. Somatic hypermuta tion in peritoneal B1b cells. Mol. Immunol. 2009; 46 (8-9): 1613-1619.


Для цитирования:


Дьяков И.Н., Сидорова Е.В. Субпопуляции В-лимфоцитов и влияние микроокружения на их функциональную активность. Пульмонология. 2010;(5):116-123. https://doi.org/10.18093/0869-0189-2010-5-116-123

Просмотров: 33


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)