Preview

Пульмонология

Расширенный поиск

Патогенетические особенности хронической обструктивной болезни легких и бронхиальной астмы

https://doi.org/10.18093/0869-0189-2010-3-120-123

Полный текст:

Об авторах

Н. А. Порахонько
ГУ "РНПЦ пульмонологии и фтизиатрии", Минск
Россия


И. М. Лаптева
ГУ "РНПЦ пульмонологии и фтизиатрии", Минск
Россия


Список литературы

1. Kraft M. Asthma and chronic obstructive pulmonary disease exhibit common origins in any country! Am. J. Respir. Crit. Care Med. 2006; 174: 238-240.

2. Barnes P.J. Against the Dutch hypothesis: asthma and chronic obstructive pulmonary disease are distinct diseases. Am. J. Respir. Crit. Care Med. 2006; 174: 240-243.

3. Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Immunol. Rev. 2008; 8: 183-192.

4. Barnes P.J. Mediators of chronic obstructive pulmonary disease. Pharmacol. Rev. 2004; 56: 515-548.

5. Siddiqui S., Sutcliffe A., Shikotra A. et al. Vascular remodeling is a feature of asthma and nonasthmatic eosinophilic bronchitis. J. Allergy Clin. Immunol. 2007; 120: 813-819.

6. Hogg J.C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004; 364: 709-721.

7. Hogg J.C., Chu F., Utokaparch S. et al. The nature of small airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 2645-2653.

8. Caramori G., Di Gregorio C., Carlstedt I. et al. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 2004; 45: 477-484.

9. Taraseviciene:Stewart L., Douglas I.S., Nana:Sinkam P.S. et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc. Am. Thorac. Soc. 2006; 3: 687-690.

10. Tuder R.M., Yoshida T., Arap W. et al. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc. Am. Thorac. Soc. 2006; 3: 503-510.

11. Reber L., Da Silva C.A., Frossard N. Stem cell factor and its receptor cKit as targets for inflammatory diseases. Eur. J. Pharmacol. 2006; 533: 327-340.

12. Galli S.J., Kalesnikoff J., Grimbaldeston M.A. et al. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 2005; 23: 749-786.

13. Brightling C.E., Bradding P., Symon F.A. et al. Mastcell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 2002; 346: 1699-1705.

14. Traves S.L., Smith S.J., Barnes P.J. et al. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J. Leukoc. Biol. 2004; 76: 441-450.

15. Barnes P.J. Macrophages as orchestrators of COPD. J. COPD 2004; 1: 59-70.

16. Meyer E.H., DeKruyff R.H., Umetsu D.T. T cells and NKT cells in the pathogenesis of asthma. Annu. Rev. Med. 2008; 59: 281-292.

17. Kay A.B. The role of T lymphocytes in asthma. Chem. Immunol. Allergy 2006; 91: 59-75.

18. Barnes P.J. Cytokine networks in asthma and chronic obstructive pulmonary disease. J. Clin. Invest 2008; 118: 3546-3556.

19. Ho I.C., Pai S.Y. GATA3 - not just for Th2 cells anymore. Cell Mol. Immunol. 2007; 4: 15-29.

20. Barnes P.J. Role of GATA3 in allergic diseases. Curr. Mol. Med. 2008; 8: 330-334

21. Maneechotesuwan K., Xin Y., Ito K. et al. Regulation of Th2 cytokine genes by p38 MAPKmediated phosphorylation of GATA3. J. Immunol. 2007; 178: 2491-2498.

22. Finotto S., Neurath M.F., Glickman J.N. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking Tbe. Science 2002; 295: 336-338.

23. Saetta M., Mariani M., Panina:Bordignon P. et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002; 165:1404-1409.

24. Costa C., Rufino R., Traves S.L. et al. CXCR3 and CCR5 chemokines in the induced sputum from patients with COPD. Chest 2008; 133: 26-33.

25. Xanthou G., Duchesnes C.E., Williams T.J. CCR3 function al responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur. J. Immunol. 2003; 33: 2241-2250.

26. Chrysofakis G., Tzanakis N., Kyriakoy D. et al. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 2004; 125: 71-76.

27. van Rensen E.L., Sont J.K., Evertse C.E. et al. Bronchial CD8 cell infiltrate and lung function decline in asthma Am. J. Respir. Crit. Care Med. 2005; 172: 837-841.

28. Takhar P., Corrigan C.J., Smurthwaite L. et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J. Allergy Clin. Immunol. 2007; 119: 213-218.

29. Agusti A., Macnee W., Donaldson K., Cosio M. Hypothesis: does COPD have an autoimmune component? Thorax 2003; 58: 832-834.

30. Ying S., O'Connor B., Ratoff J. et al. Thymic stromal lym phopoietin expression is increased in asthmatic airways and correlates with expression of Th2attracting chemokines and disease severity. J. Immunol. 2005; 174: 8183-8190.

31. Allakhverdi Z., Comeau M.R., Jessup H.K. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 2007; 204: 253-258.

32. Report GOLD: Global initiative for chronic obstructive lung disease, updated 2008, available on www.goldcopd.org.

33. Report GINA: Global initiative for Asthma, updated 2008, available on www.ginasthma.org


Рецензия

Для цитирования:


Порахонько Н.А., Лаптева И.М. Патогенетические особенности хронической обструктивной болезни легких и бронхиальной астмы. Пульмонология. 2010;(3):120-123. https://doi.org/10.18093/0869-0189-2010-3-120-123

Просмотров: 149


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)