Preview

PULMONOLOGIYA

Advanced search

Changes in T-lymphocyte population containing chemokine receptors in patients with chronic obstructive pulmonary disease

https://doi.org/10.18093/0869-0189-2013-0-2-41-45

Abstract

Summary. Chronic obstructive pulmonary disease (COPD) is a difficult-to-treat progressive disease. About 14.7–68.6 % of COPD cases are not related to smoking. We examined 21 nonsmokers with COPD, 20 smokers with COPD, 20 healthy nonsmokers and 21 healthy smokers. Relative number of peripheral blood T-lymphocytes containing CCR5 and CXCR3 chemokine receptors was determined by flow cytometry. CXCR3+ and CCR5+ T-cell per cent number was increased in non-smokers with COPD compared with healthy non-smokers. A higher proportion of T-cells containing CCR5 and CXCR3 receptors on the cell surface was also observed in blood of smokers with COPD compared both to healthy smokers and nonsmokers. Our findings suggest similar mechanism of T-cells migration from blood into the airways both in non-smoking and smoking patients.

About the Authors

A. G. Kadushkin
УО "Белорусский государственный медицинский университет"
Belarus


T. V. Shman
ГУ "Республиканский научно-практический центр детской онкологии, гематологии и иммунологии"
Belarus


M. V. Belevtsev
ГУ "Республиканский научно-практический центр детской онкологии, гематологии и иммунологии"
Belarus


Zh. A. Ibragimova
УО "Белорусский государственный медицинский университет"
Belarus


A. D. Taganovich
УО "Белорусский государственный медицинский университет"
Belarus


References

1. Salvi S.S., Barnes P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374: 733–743.

2. Murray C.J., Lopez A.D. Alternative projections of mortality and disability by course 1990–2020: Global Burden of Disease Study. Lancet 1997; 349: 1498–1504.

3. Halbert R.J., Natoli J.L., Gano A. et al. Global burden of COPD: systematic review and meta-analysis. Eur. Respir. J. 2006; 28 (3): 523–532.

4. Zhou Y., Wang C., Yao W. et al. COPD in Chinese nonsmokers. Eur. Respir. J. 2009; 33: 509–518.

5. Gunen H., Hacievliyagil S.S., Yetkin O. et al. Prevalence of COPD: First epidemiological study of a large region in Turkey. Eur. J. Intern. Med. 2008; 19 (7): 499–504.

6. Кадушкин А.Г., Таганович А.Д. Молекулярно-клеточные механизмы развития хронической обструктивной болезни легких. Воен. мед. 2012; 1: 132–138.

7. Bonecchi R., Bianchi G., Bordignon P.P. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998; 187 (1): 129–134.

8. Wan P., Zhong X.N., He Z.Y. et al. The changes and significance of interleukin-16 and CXC chemokine receptor 3 expression in pulmonary artery of smokers with chronic obstructive pulmonary disease. Zhonghua Nei Ke Za Zhi 2009; 48 (10): 841–845.

9. Freeman С.M., Curtis J.L., Chensue S.W. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am. J. Pathol. 2007; 171 (3): 767–776.

10. Di Stefano A., Capelli A., Lusuardi M. et al. Decreased T lymphocyte infiltration in bronchial biopsies of subjects with severe chronic obstructive pulmonary disease. Clin. Exp. Allergy 2001; 31 (6): 893–902.

11. Koch A., Gaczkowski M., Sturton G. et al. Modification of surface antigens in blood CD8+ T-lymphocytes in COPD: effects of smoking. Eur. Respir. J. 2007; 29: 42–50.

12. Bronzyna S., Ahern J., Hodge J. et al. Chemotactic mediators of Th1 T-cell trafficking in smokers and COPD patients. COPD 2009; 6 (1): 4–16.

13. World Health Organization. Guidelines for controlling and monitoring the tobacco epidemic. Geneva: WHO; 2008.

14. Global Strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Global initiative for chronic obstructive lung disease (GOLD); 2011.

15. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Global initiative for chronic obstructive lung disease (GOLD); 2009.

16. Wanger J., Clausen J.L., Coates A. et al. Standartisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26: 511–522.

17. Smyth L.J., Starkey C., Vestbo J. et al. CD4-regulatory cells in COPD patients. Chest 2007; 132 (1): 156–163.

18. Domagala+Kulawik J., Hoser G., Dabrowska M. et al. CD4+ / CD25+ cells in systemic inflammation in COPD. Scand. J. Immunol. 2011; 73 (1): 59–65.

19. Domagala+Kulawik J., Hoser G., Dabrowska M. et al. Fas+ lymphocytes and CD4+ / CD25+ cells in peripheral blood of never smoking patients with chronic obstructive pulmonary disease. Centr. Eur. J. Immunol. 2011; 36 (4): 226–232.

20. Muehlinghaus G., Cigliano L., Huehn S. et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 2005; 105 (10): 3965–3971.

21. Inngjerdingen M., Damaj B., Maghazachi A.A. Expression and regulation of chemokine receptors in human natural killer cells. Blood 2001; 97 (2): 367–375.

22. Barnes P.J. Distribution of receptor targets in the lung. Proc. Am. Thorac. Soc. 2004; 1 (4): 345–351.

23. Scholten D.J., Canals M., Maussang D. et al. Pharmacological modulation of chemokine receptor function. Br. J. Pharmacol. 2012; 165 (6): 1617–1643.

24. Кадушкин А.Г., Таганович А.Д. Роль хемокинов в патогенезе хронической обструктивной болезни легких. Мед. журн. 2012; 2: 139–144.

25. O'Boyle G., Fox C.R., Walden H.R. et al. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation. Proc. Natl Acad. Sci. USA 2012; 109 (12): 4598–4603.


Review

For citations:


Kadushkin A.G., Shman T.V., Belevtsev M.V., Ibragimova Zh.A., Taganovich A.D. Changes in T-lymphocyte population containing chemokine receptors in patients with chronic obstructive pulmonary disease. PULMONOLOGIYA. 2013;(2):41-45. (In Russ.) https://doi.org/10.18093/0869-0189-2013-0-2-41-45

Views: 602


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)