Preview

 Пульмонология

Расширенный поиск

Диагностическая и прогностическая роль повышения биомаркеров повреждения миокарда (тропонина I и белка, связывающего жирные кислоты) при обострении хронической обструктивной болезни легких

https://doi.org/10.18093/0869-0189-2012-0-1-66-74

Полный текст:

Аннотация

Резюме. Целью исследования было изучение диагностической и прогностической значимости биомаркеров повреждения миокарда (H-FABP, Troponin I) при обострениях хронической обструктивной болезни легких (ХОБЛ).

Исследование имело открытый проспективный дизайн. Были обследованы 80 пациентов (67 мужчин и 13 женщин; средний возраст – 64,2 ± 7,8 года; индекс массы тела – 25,8 ± 8,8 кг / м2). Всем пациентам выполнялись комплексное обследование (рентгенография органов грудной клетки, исследование функции легких, эхокардиография) и измерение уровня сывороточного тропонина I (Tn I) (Biomerica), H-FABP (Hycult Biotech), BNP-фрагмента (Biomedica).

Основными причинами обострения ХОБЛ были инфекции нижних дыхательных путей – ИНДП (43,7 %) и пневмония (32,5 %), а также декомпенсация хронической сердечной недостаточности – ДХСН (12,5 %), развитие острого инфаркта миокарда – ОИМ (11,3 % случаев). Уровень BNP-фрагмента при пневмонии (р = 0,007), ДХСН (р = 0,002), ОИМ (р = 0,012) был выше, чем при ИНДП. Достоверных различий между группами пациентов с пневмонией и ДХСН (р = 0,128), пневмонией и ОИМ (р = 0,651) не наблюдалось. Уровень H-FABP значимо повышался у больных с ОИМ по сравнению с группой ИНДП (р = 0,003), других различий в группах не обнаружено. Повышение Tn I (> 0,5 нг / мл) отмечалось в 21,3 % случаев. Площадь под ROC-кривой при прогнозировании госпитального летального исхода от всех причин для BNP-фрагмента составила 0,827 (95%-ный доверительный интервал (ДИ) – 0,729–0,626; p < 0,0001; чувствительность – 0,789; специфичность – 0,787); для H-FABP – 0,809 (95%-ный ДИ – 0,673–0,945; p < 0,0001; чувствительность – 0,737; специфичность – 0,869). Выживаемость пациентов была хуже при повышении Tn I > 0,5 нг / мл, чем при его уровне < 0,5 нг / мл (log-rank test; р < 0,0001).

Таким образом, высвобождение биомаркеров повреждения миокарда (H-FABP, Tn I) наблюдалось при обострении ХОБЛ без острого коронарного синдрома. Повышенный их уровень являлся предиктором госпитальной летальности от всех причин.

Об авторах

Г. Е. Баймаканова
ФГУ "НИИ пульмонологии" ФМБА России
Россия

к. м. н., старший научный сотрудник лаборатории интенсивной терапии и дыхательной недостаточности 

105077, Москва, ул. 11-я Парковая, 32, корп. 4. Тел. / факс: (495) 465-74-15.



С. Н. Авдеев
ФГУ "НИИ пульмонологии" ФМБА России
Россия

д. м. н., проф., руководитель клинического отдела 

105077, Москва, ул. 11-я Парковая, 32, корп. 4. Тел. / факс: (495) 465-52-64.



Список литературы

1. McGhan R., Radcliff T., Fish R. et al. Predictors of rehospitalization and death after a severe exacerbation of COPD. Chest 2007; 132: 1748–1755.

2. Ruiz-Gonzalez A., Lacasta D., Ibarz M. et al. C-reactive protein and other predictors of poor outcome in patients hospitalized with exacerbations of chronic obstructive pulmonary disease. Respirology 2008; 13: 1028–1033.

3. Sin D.D., Anthonisen N.R., Soriano J.B., Agusti A.G. Mortality in COPD: role of comorbidities. Eur. Respir. J. 2006; 28: 1245–1257.

4. Holguin F., Folch E., Redd S.C. et al. Comorbidity and mortality in COPD-related hospitalizations in the United States, 1979–2001. Chest 2005; 128: 2005–2011.

5. Connors A.F.Jr., Dawson N.V., Thomas C. et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 1996, 154: 959–967.

6. Pingleton S.K. Complications of acute respiratory failure. Am. Rev. Respir. Dis. 1988; 137: 1463–1493.

7. Kollef M.H., Ladenson J.H., Eisenberg P.R. Clinically recognized cardiac dysfunction: an independent determinant of mortality among critically ill patients. Is there a role for serial measurement of cardiac troponin I? Chest 1997; 111: 1340–1347.

8. Guest T.M., Ramanathan A.V., Tuteur P.G. et al. Myocardial injury in critically ill patients. A frequently unrecognized complication. J.A.M.A. 1995; 273: 1945–1949.

9. Render M.L., Weinstein A.S., Blaustein A.S. Left ventricular dysfunction in deteriorating patients with chronic obstructive pulmonary disease. Chest 1995; 107: 162–168.

10. Thygesen K., Alpert J.S., White H.D. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2007; 50 (22): 2174–2195.

11. Adams J.E. III, Bodor G., Davila-Roman V. et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 1993; 88 (1): 101–106.

12. Missov E., Calzolari C., Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation 1997; 96: 2953–2958.

13. Meyer T., Binder L., Hruska N. et al. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J. Am. Coll. Cardiol. 2000; 36: 1632–1636.

14. Apple F.S., Murakami M.M., Pearce L.A. et al. Predictive value of cardiac troponin I and T for subsequent death in endstage renal disease. Circulation 2002. 106 (23): 2941–2945.

15. Kang E.W., Na H.J., Hong S.M. et al. Prognostic value of elevated cardiac troponin I in ESRD patients with sepsis. Nephrol. Dial. Transplant. 2009; 24 (5): 1568–1573.

16. Baillard C., Boussarssar M., Fosse J.P. et al. Cardiac troponin I in patients with severe exacerbation of chronic obstructive pulmonary disease. Intens. Care Med. 2003; 29: 584–589.

17. King D.A., Codish S., Novack V. et al. The role of cardiac troponin I as a prognosticator in critically ill medical patients: a prospective observational cohort study. Crit. Care 2005; 9 (4): 31.

18. Kollef M.H., Ladenson J.H., Eisenberg P.R. Clinically recognized cardiac dysfunction: an independent determinant of mortality among critically ill patients. Chest 1997; 111 (5): 1340–1347.

19. Noble J., Reid A., Jordan L. et al. Troponin I and myocardial injury in the ICU. Br. J. Anaesth. 1999; 82: 41–46.

20. Relos R.P., Hasinoff I.K., Beilman G.J. Moderately elevated serum troponin concentrations are associated with increased morbidity and mortality rates in surgical intensive care unit patients. Crit. Care Med. 2003; 31 (11): 2598–2603.

21. Turley A.J., Gedney J.A. Role of cardiac troponin as a prognosticator in critically ill patients. Crit. Care 2005; 9 (6): E30.

22. Wright R.S., Williams B.A., Cramner H. et al. Elevations of cardiac troponin I are associated with increased short-term mortality in noncardiac critically ill emergency department patients. Am. J. Cardiol. 2002; 90 (6): 634–636.

23. Babuin L., Vasile V.C., Rio Perez J.A. et al. Elevated cardiac troponin is an independent risk factor for short- and longterm mortality in medical intensive care unit patients. Crit. Care Med. 2008; 36 (3): 759–765.

24. Quenot J.P., Le Teuff G., Quantin C. et al. Myocardial injury in critically ill patients. Chest 2005; 128 (4): 2758–2764.

25. Ammann P., Maggiorini M., Bertel O. et al. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J. Am. Coll. Cardiol. 2003; 41: 2004–2009.

26. Chan C.P., Sum K.W., Cheung K.Y. et al. Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein. J. Immunol. Meth. 2003; 279 (1/2): 91–100.

27. Panteghini M. Role and importance of biochemical markers in clinical cardiology. Eur. Heart J. 2004; 25: 1187–1196.

28. Mad P., Domanovits H., Fazelnia C. et al. Human heart-type fatty-acid-binding protein as a point-of-care test in the early diagnosis of acute myocardial infarction. Quart. J. Med. 2007; 100: 203–210.

29. O'Donoghue M., de Lemos J.A., Morrow D.A. et al. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation 2006; 114: 550–557.

30. Kilcullen N., Viswanathan K., Das R. et al. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values. J. Am. Coll. Cardiol. 2007; 50: 2061–2067.

31. Niizeki T., Takeishi Y., Arimoto T. et al. Persistently increased serum concentration of heart-type fatty-acidbinding protein predicts adverse clinical outcomes in patients with chronic heart failure. Circ. J. 2008; 72: 109–114.

32. Lankeit M., Dellas C., Panzenböck A. et al. Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2008; 31: 1024–1029.

33. Puls M., Dellas C., Lankeit M. et al. Heart-type fatty acid binding protein permits early risk stratification of pulmonary embolism. Eur. Heart J. 2007; 28: 224–229.

34. Oktay B., Ardic S. Is heart type fatty acid binding protein a marker of cardiac damage in patients with acute attacks of chronic obstructive pulmonary disease? Eur. Respir. J. 2009; Р3111; 103s.

35. Seyhan E.C., Onur I., Sokucu S. et al. Relation of troponin and hert type fatty acid protein (H-FABP) levels to echocardiographic and cardiac infarction injury score (CIS) with patients with prespiratory insufficiency due to COPD attack. Eur. Respir. J. 2009; Р695; 123s.

36. Brekke P.H., Omland T., Holmedal S.H. et al. Troponin T elevation and long-term mortality after chronic obstructive pulmonary disease exacerbation. Eur. Respir. J. 2008; 31: 563–570.

37. Martins C.S., Rodrigues M.J.O., Miranda V.P., Nunes J.P.L. Prognostic value of cardiac troponin I in patients with COPD acute exacerbation. Netherlands J. Med. 2009; 67 (10): 341–349.

38. Chang C.L., Robinson S.C., Mills G.D. et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011; 66 (9): 764–768.

39. Global Initiative for Chronic Obstructive Lung Disease GOLD. Global Strategy for the Diagnosis, Management, and Preventionof Chronic Obstructive Pulmonary Disease. 2009. http://www.goldcopd.com (accessed 27 Jun. 2010).

40. Anthonisen N.R., Manfreda J., Warren C.P. et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987; 106: 196–204.

41. Quanier P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993; 6 (Suppl. 16): 5–40.

42. Swedberg K., Cleland J., Dargie H. et al. The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005). Eur. Heart J. 2005; 26: 1115–1140.

43. Cheng V., Kazanagra R., Garcia A. et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol. 2001; 37: 386–391.

44. Joint ESC / ACCF / AHA / WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Circulation 2007; 27; 116: 26–34.

45. Korff S., Katus H.A., Giannitsis E. Differential diagnosis of elevated troponins. Heart 2006; 92: 987–993.

46. Torbicki A., Kurzyna M., Kuca P. et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 2003; 108: 844–848.

47. Barnes P.J. Chronic obstructive fulmonary disease. N. Engl. J. Med. 2000; 343: 269–280.

48. Wouters E.F.M. Local and systemic inflammation in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005; 2: 26–33.

49. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005; 352: 1685–1695.

50. Fabbri L.M., Rabe K.F. From COPD to chronic systemic inflammatory syndrome? Lancet 2007; 370: 797–799.

51. Donaldson G.C., Hurst J.R., Smith C.J. et al. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 2010; 137: 1091–1097.

52. Antman E.M., Tanasijevic M.J., Thompson B. et al. Cardiacspecific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N. Engl. J. Med. 1996; 335: 1342–1349.

53. Jeremias A., Gibson M. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann. Intern. Med. 2005; 142: 786–791.

54. Higgins J.P., Higgins J.A. Elevation of cardiac troponin I indicates more than myocardial ischemia. Clin. Invest. Med. 2003; 26: 133–147.

55. Meyer T., Binder L., Hruska N. et al. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J. Am. Coll. Cardiol. 2000; 36: 1632–1636.

56. Mahajan N., Mehta Y., Rose M. et al. Elevated troponin level is not synonymous with myocardial infarction. Int. J. Cardiol. 2006; 111: 442–449.

57. Nunes J.P.L., Macedo F. An analytical triad for the diagnosis of pulmonary embolism. Cardiology 2000; 94: 264.

58. Hessel M.H.M., Atsma D.E., van der Valk E.J.M. et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. Eur. J. Physiol. 2008; 455: 979–986.

59. Feng J., Schaus B.J., Fallavollita J.A. et al. Preload induces troponin I degradation independently of myocardial ischemia. Circulation 2001; 103: 2035–2037.

60. Peacock W.F., De Marco T., Fonarow G.C. et al. Cardiac troponin I and outcome in acute heart failure. N. Engl. J. Med. 2008; 358: 2117–2126.

61. Abroug F., Ouanes-Besbes L., Nciri N. et al. Association of left-heart dysfunction with severe exacerbation of chronic obstructive pulmonary disease: diagnostic performance of cardiac biomarkers. Am. J. Respir. Crit. Care Med. 2006; 174: 990–996.

62. Le Jemtel T., Padeletti M., Jelic S. Diagnostic and therapeutic challenges in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure. J. Am. Coll. Cardiol. 2007; 49 (2): 171–180.

63. Brueckmann M., Huhle G., Lang S. et al. Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 2005; 112 (4): 527–534.

64. Roch A., Allardet-Servent J., Michelet P. et al. NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients. Crit. Care Med. 2005; 33: 1001–1007.

65. Charpentier J., Luyt C.-E., Fulla Y. et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit. Care Med. 2004; 32: 660–665.

66. Hoffmann U., Brueckmann M., Bertsch T. et al. Increased plasma levels of NT-proANP and NTproBNP as markers of cardiac dysfunction in septic patients. Clin. Lab. 2005; 51: 373–379.

67. Berendes E., Van Aken H., Raufhake C. et al. Differential secretion of atrial and brain natriuretic peptide in critically ill patients. Anesth. Analg. 2001; 93: 676–682.

68. Cuthbertson B.H., Patel R.R., Croal B.L. et al. B-type natriuretic peptide and the prediction of outcome in patients admitted to intensive care. Anaesthesia 2005; 60: 16–21.

69. Jefic D., Lee J.W., Jefic D. et al. Utility of B-type natriuretic peptide and N-terminal pro Btype natriuretic peptide in evaluation of respiratory failure in critically ill patients. Chest 2005; 128: 288–295.

70. Rudiger A., Gasser S., Fischler M. et al. Comparable increase of B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide levels in patients with severe sepsis, septic shock, and acute heart failure. Crit. Care Med. 2006; 34: 2140–2144.

71. Chien J.-Y., Lin V.-S., Huang Y.-C. T. et al. Changes in B-type natriuretic peptide improve weaning outcome predicted by spontaneous breathing trial. Crit. Care Med. 2008; 36 (5): 1421–1426.

72. Christ M., Thuerlimann A., Laule K. et al. Long-term prognostic value of B-type natriuretic peptide in cardiac and non-cardiac causes of acute dyspnoea. Eur. J. Clin. Invest. 2007; 37: 834–841.

73. Mueller T., Gegenhuber A., Poelz W. et al. Head-to-head comparison of the diagnostic utility of BNP and NT-proBNP in symptomatic and asymptomatic structural heart disease. Clin. Chim. Acta 2004; 341: 41–48.

74. Nagaya N., Nishikimi T., Uematsu M. et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000; 102: 865–870.

75. Stolz D., Breidthardt N., Christ-Crain M. et al. Use of B-Type natriuretic peptide in the risk stratification of acute exacerbations of COPD. Chest 2008; 133 (5): 1088–1094.

76. Glatz J.F., van Bilsen M., Paulussen R.J. et al. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim. Biophys. Acta. 1988; 961 (1): 148–152.

77. Seino Y., Ogata K., Takano T. et al. Use of a whole blood rapid panel test for heart-type fatty acid-binding protein in patients with acute chest pain: comparison with rapid troponin T and myoglobin tests. Am. J. Med. 2003; 115 (3): 185–190.

78. Reichlin T., Hochholzer W., Bassetti S. et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J Med. 2009; 361 (9): 858–867.

79. Valle H.A., Riesgo L.G., Bel M.S. et al. Clinical assessment of heart-type fatty acid binding protein in early diagnosis of acute coronary syndrome. Eur. J. Emerg. Med. 2008; 15 (3): 140–144.

80. Haltern G., Peiniger S., Bufe A. et al. Comparison of usefulness of heart-type fatty acid binding protein versus cardiac troponin T for diagnosis of acute myocardial infarction. Am. J. Cardiol. 2010; 105 (1): 1–9.

81. McCann C.J., Glover B.M., Menown I.B. et al. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur. Heart J. 2008; 29 (23): 2843–2850.

82. O'Donoghue M., de Lemos J.A., Morrow D.A. et al. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation 2006; 114 (6): 550–557.

83. Kilcullen N., Viswanathan K., Das R. et al. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values. J. Am. Coll. Cardiol. 2007; 50: 2061–2067.

84. Vuilleumier N., Le Gal G., Verschuren F. et al. Cardiac biomarkers for risk stratification in non-massive pulmonary embolism: a multicenter prospective study. J. Thromb. Haemost. 2009; 7: 391–398.

85. Kaczynska A., Pelsers M.M., Bochowicz A. et al. Plasma heart-type fatty acid binding protein is superior to troponin and myoglobin for rapid risk stratification in acute pulmonary embolism. Clin. Chim. Acta 2006; 371: 117–123.

86. Yan G.T., Lin J., Hao X.H. et al. Heart-type fatty acid-binding protein is a useful marker for organ dysfunction and leptin alleviates sepsis-induced organ injuries by restraining its tissue levels. Eur. J. Pharmacol. 2009; 616 (1–3): 244–250.


Для цитирования:


Баймаканова Г.Е., Авдеев С.Н. Диагностическая и прогностическая роль повышения биомаркеров повреждения миокарда (тропонина I и белка, связывающего жирные кислоты) при обострении хронической обструктивной болезни легких.  Пульмонология. 2012;(1):66-74. https://doi.org/10.18093/0869-0189-2012-0-1-66-74

For citation:


Baymakanova G.E., Avdeev S.N. Diagnostic and prognostic impact of heart injury biomarkers (troponin I and heart-type fatty acid binding protein) in patient with acute exacerbations of chronic obstructive pulmonary disease. Russian Pulmonology. 2012;(1):66-74. (In Russ.) https://doi.org/10.18093/0869-0189-2012-0-1-66-74

Просмотров: 425


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)