Антивирусные и противовоспалительные мишени апротинина: перспективы нового использования
https://doi.org/10.18093/0869-0189-2009-3-109-118
Ключевые слова
УДК 615.281.07
Об авторах
О.П. ЖирновРоссия
С.В. Поярков
Россия
Н.А. Малышев
Россия
Список литературы
1. Polgár L. The catalytic triad of serine peptidases. Cell Mol. Life Sci. 2005; 62 (19-20): 2161-2172.
2. Klenk H.D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology 1975; 68 (2): 426-439.
3. Choppin P.W., Scheid A., Mountcastle W.E. Proceedings: Paramyxoviruses, membranes, and persistent infections. Neurology (Minneap.) 1975; 25 (5): 494.
4. Chen J., Lee K.H., Steinhauer D.A. et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 1998; 95 (3): 409-417.
5. Chen Y., Shiota M., Ohuchi M. et al. Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization. Eur. J. Biochem. 2000; 267 (11): 3189-3197.
6. Murakami M., Towatari T., Ohuchi M. et al. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus. Eur. J. Biochem. 2001; 268 (10): 2847-2855.
7. Böttcher E., Matrosovich T., Beyerle M. et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 2006; 80 (19): 9896-9898.
8. Zhirnov O.P., Ikizler M.R., Wright P. Cleavage of influenza A virus hemagglutinin in human respiratory epithelium is cell-associated and sensitive to exogenous antiproteases. J. Virol. 2002; 76: 8682-8689.
9. Kido H., Chen Y., Murakami M. Cellular proteinases and viral infection: influenza virus, sendai virus, and HIV-1. In: Proteases of infectious agents. New York: Academic Press; 1999: 205-217.
10. Guo X.L., Li L., Wei D.Q. et al. Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids 2008; 35 (2): 375-382.
11. Walker J.A., Sakaguchi T., Matsuda Y. et al. Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 1992; 190 (1): 278-287.
12. Walker J.A., Molloy S.S., Thomas G. et al. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J. Virol. 1994; 68 (2): 1213-1218.
13. Жирнов О.П., Овчаренко А.В., Букринская А.Г., Жданов В.М. Ингибиторы протеаз блокируют диссеминацию вируса гриппа в организме зараженных животных. Докл. АН СССР 1983; 270: 1483-1485.
14. Fritz H., Wunderer G. Biochemistry and application of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittel-Forsch. / Drug Res. 1983; 33 (4): 479-494.
15. Goliando P.B., Ovcharenko A.V., Zhirnov O.P. Inhibition of the reproduction of the influenza B virus by aprotinin. Vopr. Virusol. 1992; 37 (3): 144-146.
16. Hosoya M., Matsuyama S., Baba M. et al. Effects of protease inhibitors on replication of various myxoviruses. Antimicrob. Agents Chemother. 1992; 36 (7): 1432-1436.
17. Жирнов О.П., Овчаренко А.В., Букринская А.Г. Расщепление гемагглютинина вируса гриппа под действием сывороточного плазмина в культуре клеток и ин виво. Вопр. вирусол. 1981; 6: 677-687.
18. Zhirnov O.P., Ovcharenko A.V., Bukrinskaya A.G.. Suppression of influenza virus replication in infected mice by protease inhibitors. J. Gen. Virol. 1984; 65: 191-196.
19. Жирнов О.П., Овчаренко А.В., Букринская А.Г. Подавление протеолитической активации миксовирусов в зараженных куриных эмбрионах с помощью апротинина. Вопр. вирусол. 1985; 2: 204-214.
20. Zhirnov O.P., Ovcharenko A.V., Bukrinskaya A.G. Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. J. Gen. Virol. 1985; 66: 1633-1638.
21. Жирнов О.П., Овчаренко А.В., Букринская А.Г. Подавление ингибиторами протеаз репликации вируса гриппа в легких зараженных мышей. Вопр. вирусол. 1983; 3: 371-373.
22. Жирнов О.П., Киржнер Л.С., Овчаренко А.В., Малышев Н.А. Клиническая эффективность аэрозоля апротинина при гриппе и парагриппе. Вестн. РАМН 1996; 5: 26-31.
23. Zhirnov O.P., Kirzhner L.S., Ovcharenko A.V., Malyshev N.A. Aerosolized aprotinin is an effective drug against viral respiratory illness. Antiinfective Drug Chemother. 1996; 14: 209-216.
24. Жирнов О.П., Овчаренко А.В., Голяндо П.Б. и др. Антивирусный аэрозоль апротинина: Изучение местнораздражающего и аллергизирующего действия при ингаляционном введении. Антибиотики и химиотер. 1994; 39 (9-10): 54-59.
25. Жирнов О.П., Киржнер Л.С., Овчаренко А.В., Малышев Н.А. Патогенетическая терапия острых респираторных Заболеваний ингаляциями апротинина. Тер. арх. 1995; 6: 38-42.
26. Cheung C.Y., Poon L.L., Lau A.S. et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 2002; 360 (9348): 1831-1837.
27. Atmar R.L., Guy E., Guntupalli K.K. et al. Respiratory tract viral infections in inner-city asthmatic adults. Arch. Intern. Med. 1998; 158 (22): 2453-2459.
28. Чучалин А.Г., Оспельникова Т.П., Осипова Г.Л. и др. Роль респираторных инфекций в обострениях бронхиальной астмы. Пульмонология 2007; 5: 9-15.
29. Seo S.H., Webster R.G. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J. Virol. 2002; 76 (3): 1071-1076.
30. Kiselev O.I., Vasil'eva I.A., Chepik E.B. Role of lymphokines in immune response in respiratory viral infections. Zh. Mikrobiol. Epidemiol. Immunobiol. 2002; 3: 84-92.
31. Schmitz N., Kurrer M., Bachmann M.F., Kopf M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol. 2005; 79 (10): 6441-6448.
32. Julkunen I., Melén K., Nyqvist M. et al. Inflammatory responses in influenza A virus infection. Vaccine 2000; 19 (suppl. 1): S32-S37.
33. Kawaguchi M., Kokubu F., Kuga H. et al. Influenza virus A stimulates expression of eotaxin by nasal epithelial cells. Clin. Exp. Allergy 2001; 31 (6): 873-880.
34. Bianchi M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 2007; 81 (1): 1-5.
35. Ronni T., Matikainen S., Sareneva T. et al. Regulation of IFN-alpha / beta, MxA, 2',5'-oligoadenylate synthetase, and HLA gene expression in influenza A-infected human lung epithelial cells. J. Immunol. 1997; 158 (5): 2363-2374.
36. Jankowska R. Mechanisms of allergic inflammation in bronchial asthma. Centr. Eur J. Immunol. 2003; 28 (1): 36-40.
37. He S.H., Chen H.Q., Zheng J. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors. Acta Pharmacol. Sin. 2004; 25 (12): 1677-1684.
38. Smith T.J., Hougland M.W., Johnson D.A. Human lung tryptase: purification and characterization. J. Biol. Chem. 1984; 259 (17): 11046-11051.
39. Chakraborti S., Michael J.R., Chakraborti T. Role of an aprotinin-sensitive protease in protein kinase Calpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium. Cell Signal. 2004; 16 (6): 751-762.
40. Young R.E., Voisin M.B., Wang S. et al. Role of neutrophil elastase in LTB4-induced neutrophil transmigration in vivo assessed with a specific inhibitor and neutrophil elastase deficient mice. Br. J. Pharmacol. 2007; 151 (5): 628-637.
41. Türköz A., Ciğli A., But K. et al. The effects of aprotinin and steroids on generation of cytokines during coronary artery surgery. J. Cardiothorac. Vasc. Anesth. 2001; 15 (5): 603-610.
42. Churg A., Wang X., Wang R.D. et al. Alpha1-antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages. Am. J. Respir. Cell Mol. Biol. 2007; 37 (2): 144-151.
43. Hill G.E., Pohorecki R., Alonso A. et al. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth. Analg. 1996; 83 (4): 696-700.
44. Asimakopoulos G., Thompson R., Nourshargh S. et al. An anti-inflammatory property of aprotinin detected at the level of leukocyte extravasation. J. Thorac. Cardiovasc. Surg. 2000; 120 (2): 361-369.
45. Bruda N.L., Hurlbert B.J., Hill G.E. Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner. Clin. Sci. (Lond.) 1998; 94 (5): 505-509.
46. Аверьянов А.В., Поливанова А.Е. Нейтрофильная эластаза и болезни органов дыхания. Пульмонология 2006; 5: 74-79.
47. Чучалин А.Г. (ред.). Глобальная стратегия лечения и профилактики бронхиальной астмы (GINA). М.: Изд-во «Атмосфера»; 2002.
48. Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008; 8 (3): 183-192.
49. Pejler G., Abrink M., Ringvall M., Wernersson S. Mast cell proteases. Adv. Immunol. 2007; 95: 167-255.
50. Caughey G.H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 2007; 217: 141-154.
51. Kaplan A.P., Joseph K., Shibayama Y. et al. The intrinsic coagulation / kinin-forming cascade: assembly in plasma and cell surfaces in inflammation. Adv. Immunol. 1997; 66: 225-272.
52. Renné T., Gailani D. Role of factor XII in hemostasis and thrombosis: clinical implications. Expert Rev. Cardiovasc. Ther. 2007; 5 (4): 733-741.
53. Schousboe I. Pharmacological regulation of factor XII activation may be a new target to control pathological coagulation. Biochem. Pharmacol. 2008; 75 (5): 1007-1013.
54. Bae S.W., Kim H.S., Cha Y.N. et al. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem. Biophys. Res. Commun. 2003; 306 (4): 981-987.
55. Venema R.C. Post-translational mechanisms of endothelial nitric oxide synthase regulation by bradykinin. Int. Immunopharmacol. 2002; 2 (13-14): 1755-1762.
56. Myöhänen H., Vaheri A. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol. Life Sci. 2004; 61 (22): 2840-2858.
57. Castellino F.J., Ploplis V.A. Structure and function of the plasminogen / plasmin system. Thromb. Haemost. 2005; 93 (4): 647-654.
58. Takizawa H. Bronchial epithelial cells in allergic reactions. Curr. Drug Targets Inflamm. Allergy 2005; 4 (3): 305-311.
59. Mukhopadhyay S., Hoidal J.R., Mukherjee T.K. Role of TNFalpha in pulmonary pathophysiology. Respir. Res. 2006; 7: 125.
60. Komarova Y.A., Mehta D., Malik A.B. Dual regulation of endothelial junctional permeability. Sci. STKE. 2007; 412: re8.
61. Hirano K. The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 2007; 27 (1): 27-36.
62. Landis R.C. Protease activated receptors: clinical relevance to hemostasis and inflammation. Hematol. Oncol. Clin. N. Am. 2007; 21 (1): 103-113.
63. Kobayashi Y. Neutrophil infiltration and chemokines. Crit. Rev. Immunol. 2006; 26 (4): 307-316.
64. Hassim Z., Maronese S.E., Kumar R.K. Injury to murine airway epithelial cells by pollen enzymes. Thorax 1998; 53 (5): 368-371.
65. Page K., Hughes V.S., Bennett G.W., Wong H.R. German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells. Allergy 2006; 61 (8): 988-995.
66. Lee K.E., Kim J.W., Jeong K.Y. et al. Regulation of German cockroach extract-induced IL-8 expression in human airway epithelial cells. Clin. Exp. Allergy 2007; 37 (9): 1364-1373.
67. Platts-Mills T.A. Allergen avoidance in the treatment of asthma and rhinitis. N. Engl. J. Med. 2003; 349 (3): 207-208.
68. Pichavant M., Charbonnier A.S., Taront S. et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol. 2005; 115 (4): 771-778.
69. Hughes V.S., Page K. German cockroach frass proteases cleave pro-matrix metalloproteinase-9. Exp. Lung Res. 2007; 33 (3-4): 135-150.
70. Mulgrew A.T., Taggart C.C., McElvaney N.G. Alpha-1-antitrypsin deficiency: current concepts. Lung 2007; 185 (4): 191-201.
71. Berninger R.W., Teixeira M.F. Alpha 1-antitrypsin: the effect of anticoagulants on the trypsin inhibitory capacity, concentration and phenotype. J. Clin. Chem. Clin. Biochem. 1985; 23 (5): 277-281.
72. Carrell R.W., Jeppsson J.O., Laurell C.B. et al. Structure and variation of human alpha 1-antitrypsin. Nature 1982; 298 (5872): 329-334.
73. Rasche B.., Marcic I., Ulmer W.T. Effect of the protease inhibitor aprotinin on pulmonary function and on the inhibitory activity of sputum in patients with chronic obstructive bronchitis. Arzneimittel Forsch. / Drug Research. 1975; 25 (1): 110-116
74. Stockley R.A. Bronchiectasis--new therapeutic approaches based on pathogenesis. Clin. Chest Med. 1987; 8 (3): 481-494.
75. Vogelmeier C., Biedermann T., Maier K. et al. Comparative loss of activity of recombinant secretory leukoprotease inhibitor and alpha 1-protease inhibitor caused by different forms of oxidative stress. Eur. Respir. J. 1997; 10 (9): 2114-2119.
76. Meyer F.J., Wencker M., Teschler H. et al. Acute allergic reaction and demonstration of specific IgE antibodies against alpha-1-protease inhibitor. Eur. Respir. J. 1998; 12 (4): 996-997.
77. Ascenzi P., Bocedi A., Bolognesi M. et al. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr. Protein Pept. Sci. 2003; 4 (3): 231-251.
78. Planès C., Caughey G.H. Regulation of the epithelial Na+ channel by peptidases. Curr. Top. Dev. Biol. 2007; 78: 23-46.
79. Tong Z., Illek B., Bhagwandin V.J. et al. Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am. J. Physiol. Lung Cell Mol. Physiol. 2004; 287 (5): L928-L935.
80. Iwashita K., Kitamura K., Narikiyo T. et al. Inhibition of prostasin secretion by serine protease inhibitors in the kidney. J. Am. Soc. Nephrol. 2003; 14 (1): 11-16.
81. Shipway A., Danahay H., Williams J.A. et al. Biochemical characterization of prostasin, a channel activating protease. Biochem. Biophys. Res. Commun. 2004; 324 (2): 953-963.
82. Griese M., Latzin P., Kappler M. et al. Alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosispatients. Eur. Respir. J. 2007; 29 (2): 240-250.
83. Chokki M., Yamamura S., Eguchi H. et al. Human airway trypsin-like protease increases mucin gene expression in Airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2004; 30 (4): 470-478.
84. Voynow J.A., Fischer B.M., Zheng S. Proteases and cystic fibrosis. Int. J. Biochem. Cell Biol. 2008; 40 (6-7): 1238-1245.
85. Самсонова М.В., Черняева А.Л., Амелина Е.Л. Патология легких при муковисцидозе. Пульмонология 2006; 5: 113-117.
86. Капранов Н.И. Муковисцидоз - современное состояние проблемы. Пульмонология 2006; 5: 5-11.
87. Chand H.S., Foster D.C., Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb. Haemost. 2005; 94 (6): 1122-1130.
88. Sun Z., Lu W., Jiang A. et al. Expression, purification and characterization of aprotinin and human analogue of aprotinin. Protein Express. Purificat. 2009; 5: 34-40.
89. Sodha N.R., Boodhwani M., Bianchi C. et al. Aprotinin in cardiac surgery. Expert. Rev. Cardiovasc. Ther. 2006; 4 (2): 151-160.
90. Mangano D.T., Tudor I.C., Dietzel C. Multicenter Study of Perioperative Ischemia Research Group; Ischemia Research and Education Foundation. The risk associated with aprotinin in cardiac surgery. N. Engl. J. Med. 2006; 354 (4): 353-365.
91. Beierlein W., Scheule A.M., Ziemer G. Anaphylactic aprotinin reaction. Ann. Thorac. Surg. 2000; 69 (4):1298.
92. Prieto García A., Villanueva A., Lain S., Baeza M.L. Fatal intraoperative anaphylaxis after aprotinin administration. J. Invest. Allergol. Clin. Immunol. 2008; 18 (2): 136.
93. Hogue C.W., London M.J. Aprotinin use during cardiac surgery: a new or continuing controversy? Anesth. Analg. 2006; 103 (5): 1067-1670.
94. Székely A., Sápi E., Breuer T. et al. Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr. Anaesth. 2008; 18 (2): 151-159.
95. Furnary A.P., Wu Y., Hiratzka L.F. et al. Aprotinin does not increase the risk of renal failure in cardiac surgery patients. Circulation 2007; 116 (suppl. II): II27-II33.
Рецензия
Для цитирования:
Жирнов О., Поярков С., Малышев Н. Антивирусные и противовоспалительные мишени апротинина: перспективы нового использования . Пульмонология. 2009;(3):109-118. https://doi.org/10.18093/0869-0189-2009-3-109-118