Preview

PULMONOLOGIYA

Advanced search

COVID-19 and cardiovascular diseases: from epidemiology to rehabilitation

https://doi.org/10.18093/0869-0189-2020-30-5-688-699

Abstract

The article is devoted to a review of data on the prevalence and impact of cardiovascular diseases on the course and outcomes of the new coronavirus infection COVID-19. The review examines the relationship between COVID-19 and the functioning of the renin-angiotensin-aldosterone system, the pathophysiological mechanisms of their mutual influence. The analysis of the latest literature data on the safety of taking angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers is presented. The causes and pathophysiological mechanisms of the development of acute myocardial damage in COVID-19 are discussed. The issue of organizing rehabilitation assistance for patients who have undergone COVID-19 is being considered. The main components and features of the COVID-19 rehabilitation program are presented.

About the Authors

M. G. Bubnova
National Research Center for Preventive Medicine, Healthcare Ministry of Russian Federation
Russian Federation

Marina G. Bubnova – Doctor of Medicine, Professor, Head of Department of rehabilitation and secondary prevention for Cardiovascular Disease. SPIN: 6733-1430

Petroverigskiy per. 10, build. 3, Moscow, 101000
tel.: (495) 790-71-72



D. M. Aronov
National Research Center for Preventive Medicine, Healthcare Ministry of Russian Federation
Russian Federation

David M. Aronov – Doctor of Medicine, Professor; Chief Scientific Researcher. SPIN: 5094-6509

Petroverigskiy per. 10, build. 3, Moscow, 101000
tel.: (495) 790-71-72



References

1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 48. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200308-sitrep-48-covid-19.pdf?sfvrsn=16f7ccef_4 [Accessed: March 9, 2020].

2. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 10611069. DOI: 10.1001/jama.2020.1585.

3. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846–848. DOI: 10.1007/s00134-020-05991-x.

4. Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide analysis. Eur. Respir. J. 2020; 55 (5): 2000547. DOI: 10.1183/13993003.00547-2020.

5. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020; 323 (18): 1775–1776. DOI: 10.1001/jama.2020.4683.

6. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052–2059. DOI: 10.1001/jama.2020.6775.

7. Glybochko P. V., Fomin V.V., Avdeev S.N. et al. [Clinical characteristics of 1007 intensive care unit patients with SARS-CoV-2 pneumonia]. Klinicheskaya farmakologiya i terapiya. 2020; 29 (2): 21–29. DOI: 10.32756/08695490-2020-2-21-29 (in Russian).

8. ESC European Society of Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic. Available at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID19-Guidance

9. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934–943. DOI: 10.1001/jamainternmed.2020.0994.

10. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI: 10.1016/S0140-6736(20)30566-3.

11. Tai S., Tang J., Yu B. et al. Association between cardiovascular burden and requirement of intensive care among patients with mild COVID-19. Cardiovasc. Ther. 2020; 2020: 9059562. DOI: 10.1155/2020/9059562.

12. Inciardi R.M., Adamo M., Lupi L. et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur. Heart J. 2020; 41 (19): 18211829. DOI: 10.1093/eurheartj/ehaa388.

13. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI: 10.1001/jama.2020.2648.

14. Chen R., Liang W., Jiang M. et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020; 158 (1): 97–105. DOI: 10.1016/j.chest.2020.04.010.

15. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

16. Guzik T., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020; 116(10): 1666–1687. DOI: 10.1093/cvr/cvaa106.

17. Guan W.J., Ni Z.Y., Hu Y. et al. China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI: 10.1056/NEJMoa2002032.

18. Kreutz R., Algharably E.A., Azizi M. et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 2020; 116 (10): 1688–1699. DOI: 10.1093/cvr/cvaa097.

19. Tipnis S.R., Hooper N.M., Hyde R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captoprilin sensitive carboxypeptidase. J. Biol. Chem. 2000; 275 (43): 33238–33243. DOI: 10.1074/jbc.M002615200.

20. Zhang H., Penninger J.M., Li Y. et al. Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. DOI: 10.1007/s00134-020-05985-9.

21. Siedlinski M., Jozefczuk E., Xu X. et al. White blood cells and blood pressure: a mendelian randomization study. Circulation. 2020; 141 (16): 1307–1317. DOI: 10.1161/CIRCULATIONAHA.119.045102.

22. Youn J.C., Yu H.T., Lim B.J. et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013; 62 (1): 126–133. DOI: 10.1161/HYPERTENSIONAHA.113.00689.

23. Ferrario C.M., Jessup J., Chappell M.C. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111 (20): 2605–2610. DOI: 10.1161/CIRCULATIONAHA.104.510461.

24. Hanff T.C., Harhay M.O., Brown T.S. et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin. Infect. Dis. 2020; 71 (15): 870–874. DOI: 10.1093/cid/ciaa329.

25. Sommerstein R., Grani C. Rapid response: Рreventing a COVID-19 pandemic: ACE inhibitors as a potential risk factor for fatal COVID-19. Br. Med. J. 2020; 368: m810. DOI: 10.1136/bmj.m810.

26. Danser A.H.J., Epstein M., Batlle D. Renin–angiotensin system blockers and the COVID-19 pandemic: Аt present there is no evidence to abandon renin–angiotensin system blockers. Hypertension. 2020; 75 (6): 1382–1385. DOI: 10.1161/HYPERTENSIONAHA.120.15082.

27. Nicin L., Abplanalp W.T., Mellentin H. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 2020; 41 (19): 1804–1806. DOI: 10.1093/eurheartj/ehaa311.

28. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280.e8. DOI: 10.1016/j.cell.2020.02.052.

29. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE 2) in SARS coronavirus-induced lung injury. Nat. Med. 2005; 11 (8): 87587–87589. DOI: 10.1038/nm1267.

30. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020; 63 (3): 364–374. DOI: 10.1007/s11427-020-1643-8.

31. Imai Y., Kuba K., Rao S. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436 (7047): 112–116. DOI: 10.1038/nature03712.

32. Yang G., Tan Z., Zhou L. et al. Effects of ARBs and ACEIs on virus infection, inflammatory status and clinical outcomes in COVID-19 patients with hypertension: A single center retrospective study. Hypertension. 2020; 76 (1): 51–58. DOI: 10.1161/HYPERTENSIONAHA.120.15143.

33. Li J., Wang X., Chen J. et al. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 825–830. DOI: 10.1001/jamacardio.2020.1624.

34. Mancia G., Rea F., Ludergnani M. et al. Renin-angiotensinaldosterone system blockers and the risk of COVID-19. N. Engl. J. Med. 2020; 382 (25): 2431–2440. DOI: 10.1056/NEJMoa2006923.

35. Zhang P., Zhu L., Cai J. et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020; 126 (12): 1671–1681. DOI: 10.1161/CIRCRESAHA.120.317134.

36. Gao C., Cai Y., Zhang K. et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur. Heart J. 2020; 41 (22): 2058–2066. DOI: 10.1093/eurheartj/ehaa433.

37. ESC European Society of Cardiology. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. 2020, Mar. 13. Available at: https://www.escardio.org/Councils/Council-on-Hypertension(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang

38. American Colledge of Cardiology. COVID-19 clinical guidance for the cardiovascular care team. Available at: https://www.acc.org/~/media/665AFA1E710B4B3293138D14BE8D1213.pdf [Accessed: March 12, 2020].

39. Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Description and proposed management of the acute COVID19 cardiovascular syndrome. Circulation. 2020; 141 (23): 19031914. DOI: 10.1161/CIRCULATIONAHA.120.047349.

40. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020; 14 (3): 247–250. DOI: 10.1016/j.dsx.2020.03.013.

41. Hendren N.S., Grodin J.L., Drazner M.H. Unique patterns of cardiovascular involvement in COVID-19. J. Card. Fail. 2020; 26 (6): 466–469. DOI: 10.1016/j.cardfail.2020.05.006.

42. Jaffe A.S., Cleland J.G.F., Katus H.A. Myocardial injury in severe COVID-19 infection. Eur. Heart J. 2020; 41 (22): 2080–2082. DOI: 10.1093/eurheartj/ehaa447.

43. Babapoor-Farrokhran S., Gill D., Walker J. et al. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020; 253: 117723. DOI: 10.1016/j.lfs.2020.117723.

44. Sardu C., Gambardella J., Morelli M.B. et al. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J. Clin. Med. 2020; 9 (5): 1417. DOI: 10.3390/jcm9051417.

45. Smeda M., Chlopicki S. Endothelial barrier integrity in COVID-19-dependent hyperinflammation: does the protective facet of platelet function matter? Cardiovasc. Res. 2020; 116 (10): e118–121. DOI: 10.1093/cvr/cvaa190.

46. Xiong T.Y., Redwood S., Prendergast B. et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020; 41 (19): 1798–1800. DOI: 10.1093/eurheartj/ehaa231.

47. Cooper L.T.Jr. Myocarditis. N. Engl. J. Med. 2009; 360 (15): 1526–1538. DOI: 10.1056/NEJMra0800028.

48. Shi S., Qin M., Shen B. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 802–810. DOI: 10.1001/jamacardio.2020.0950.

49. Arentz M., Yim E., Klaff L. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020; 323 (16): 1612–1614. DOI: 10.1001/jama.2020.4326.

50. Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020; 109 (5): 531–538. DOI: 10.1007/s00392-020-01626-9.

51. Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (7): 811–818. DOI: 10.1001/jamacardio.2020.1017.

52. Shi S., Qin M., Cai Y. et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur. Heart J. 2020; 41 (22): 2070–2079. DOI: 10.1093/eurheartj/ehaa408.

53. Argulian E., Sud K., Vogel B. et al. Right ventricular dilation in hospitalized patients with COVID-19 infection. JACC Cardiovasc. Imaging. [Preprint. Posted 2020, May 15]. DOI: 10.1016/j.jcmg.2020.05.010.

54. Chen C., Zhou Y., Wang D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45 (3): 230–232. DOI: 10.1007/s00059-020-04909-z.

55. Fovino L.N., Cademartiri F., Tarantini G. Subclinical coronary artery disease in COVID-19 patients. Eur. Heart J. Cardiovas. Imaging. 2020; 21 (9): 1055–1056. DOI: 10.1093/ehjci/jeaa202.

56. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020; 323 (18): 1775–1776. DOI: 10.1001/jama.2020.4683.

57. Bartlo P., Bauer N. Pulmonary rehabilitation post-acute care for Covid-19 (PACER). Available at: https://youtu.be/XjY_7O3Qpd8

58. Zhao H.M., Xie Y.X., Wang C. Recommendations for respiratory rehabilitation in adults with COVID-19. Chin. Med. J. (Engl). 2020; 133 (13): 1595–1602. DOI: 10.1097/CM9.0000000000000848.

59. Thomas P., Baldwin C., Bissett B. et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J. Physiother. 2020; 66 (2): 73–82. DOI: 10.1016/j.jphys.2020.03.011.

60. Sheehy L.M. Considerations for postacute rehabilitation for survivors of COVID-19. JMIR Public Health Surveill. 2020; 6 (2): e19462. DOI: 10.2196/19462.

61. Barker-Davies R.M., O’Sullivan O., Senaratne K.P. et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. J. Sports Med. 2020; 54 (16): 949–959. DOI: 10.1136/bjsports-2020-102596.

62. Xiang Y.T., Zhao Y.J., Liu Z.H. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform. Int. J. Biol. Sci. 2020; 16 (10): 1741–1744. DOI: 10.7150/ijbs.45072.

63. Aronov D.M., Bubnova M.G., Barbarash O.L. et al. [Acute ST elevation myocardial infarction: rehabilitation and secondary prevention: National Russian Guidelines]. Rossiyskiy kardiologicheskiy zhurnal. 2015; 20 (1): 6–52. DOI: 10.15829/1560-4071-2015-1-6-52 (in Russian).

64. Bokeriya L.A., Aronov D.M., Bubnova M.G. et al. [Russian clinical guidelines Coronary artery bypass grafting in patients with ischemic heart disease: rehabilitation and secondary prevention]. Cardiosomatica. 2016; 7 (3–4): 5–71 (in Russian).


Review

For citations:


Bubnova M.G., Aronov D.M. COVID-19 and cardiovascular diseases: from epidemiology to rehabilitation. PULMONOLOGIYA. 2020;30(5):688-699. https://doi.org/10.18093/0869-0189-2020-30-5-688-699

Views: 4259


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)