Preview

Пульмонология

Расширенный поиск

Коронавирусная болезнь-2019 (COVID-19): значение ингибиторов IL-6

https://doi.org/10.18093/0869-0189-2020-30-5-629-644

Полный текст:

Аннотация

Пандемия коронавирусной болезни-2019 (COVID-19) привлекла внимание к новым клиническим и фундаментальным проблемам иммунопатологии заболеваний человека. Поскольку при COVID-19 именно гипериммунный ответ, получивший наименование синдром «цитокинового шторма», составляет основу патогенеза острого респираторного дистресс-синдрома и мультиорганной дисфункции при COVID-19. При этом особенно привлекательной является возможность репозиционирования (drug repurposing) некоторых широкоприменяемых для лечения иммуновоспалительных ревматических заболеваний (ИВРЗ) противовоспалительных лекарственных препаратов, включая глюкокортикостероиды, базисные противовоспалительные препараты, генно-инженерные биологические препараты и таргетные базисные противовоспалительные препараты. В спектре цитокинов, принимающих участие в патогенезе синдрома «цитокинового шторма» при ИВРЗ и COVID-19, большое значение придается провоспалительному цитокину интерлейкину (IL)-6. Разработка и внедрение в клиническую практику моноклональных антител (мАТ), ингибирующих активность IL-6, относится к числу крупных достижений в лечении ИВРЗ, а в последние годы – критических состояний в рамках синдрома «цитокинового шторма», в т. ч. при COVID-19. В обзоре обсуждаются материалы многочисленных исследований, посвященных проблемам эффективности и безопасности мАТ к рецептору IL-6 (тоцилизумаб) и других мАТ, ингибирующих активность этого цитокина при COVID-19. Несмотря на эффективность ингибирования IL-6 у пациентов с тяжелым течением COVID-19, требуется дальнейшее изучение многих теоретических и клинических проблем иммунопатологии и фармакотерапии этого заболевания.

Об авторе

Е. Л. Насонов
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт ревматологии им. В.А.Насоновой»; Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет им. И.М.Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

Насонов Евгений Львович – д. м. н., профессор, академик Российской академии наук, президент Общероссийской общественной организации «Ассоциация ревматологов России»; научный руководитель Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт ревматологии им. В.А.Насоновой»; главный внештатный специалист-ревматолог Министерства здравоохранения Российской Федерации; профессор кафедры внутренних, профессиональных болезней и ревматологии Федерального государственного автономного образовательного учреждения высшего образования «Первый Московский государственный медицинский университет им. И.М.Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет); главный редактор журнала «Научно-практическая ревматология»

115522, Москва, Каширское шоссе, 34а
119991, Москва, ул. Трубецкая, 8, стр. 2
тел.: (495) 109-29-11 



Список литературы

1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI: 10.1001/jama.2020.2648.

2. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579 (7798): 265–269. DOI: 10.1038/s41586-020-2008-3.

3. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020; 58 (2): 123–132. DOI: 10.14412/19954484-2020-123-132.

4. Schett G., Manger B., Simon D., Caporali R. COVID-19 revising inflammatory pathways of arthritis. Nat. Rev. Rheumatol. 2020; 16 (8): 465–470. DOI: 10.1038/s41584020-0451-z.

5. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses. J. Med. Virol. 2020; 92 (4): 424–432. DOI: 10.1002/jmv.25685.

6. Kingsmore K.M., Grammer A.C, Lipsky P.E. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol. 2020; 16 (1): 32–52. DOI: 10.1038/s41584-019-0337-0.

7. Schett G., Sticherling M., Neurath M.F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol. 2020; 20 (5): 271–272. DOI: 10.1038/s41577020-0312-7.

8. Tay M.Z., Poh C.M., Rénia L. et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020; 20 (6): 363–374. DOI: 10.1038/s41577-0200311-8.

9. Vabret N., Britton G.J., Gruber C. et al. Immunology of COVID-19: Current state of the science. Immunity. 2020; 52 (6): 910–941. DOI: 10.1016/j.immuni.2020.05.002.

10. Hadjadj J., Yatim N., Barnabei L. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020; 369 (6504): 718–724. DOI: 10.1126/science.abc6027.

11. Mehta P. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 10331034. DOI: 10.1016/S0140-6736(20)30628-0.

12. Pedersen S.F., Ho Y.C. A storm is raging. J. Clin. Invest. 2020; 130 (5): 2202–2205. DOI: 10.1172/JCI137647.

13. Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheum. 2020; 72 (7): 1059–1063. DOI: 10.1002/art.41285.

14. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368 (6490): 473–474. DOI: 10.1126/science.abb8925.

15. Ramos-Casals M., Brito-Zeron P., Lopez-Guillermo A. et al. Adult haemophagocytic syndrome. Lancet. 2014; 383 (9927): 1503–1516. DOI: 10.1016/S0140-6736(13)61048-X.

16. Carter S.J., Tattersall R.S., Ramanan A.V. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019; 58 (1): 5–17. DOI: 10.1093/rheumatology/key006.

17. Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The immunology of macrophage activation syndrome. Front. Immunol. 2019; 10: 119. DOI: 10.3389/fimmu.2019.00119.

18. Behrens E.M., Koretzky G.A. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol. 2017; 69 (6):1135–1143. DOI: 10.1002/art.40071.

19. Shimabukuro-Vornhagen A., Gödel P., Subklewe M. et al. Cytokine release syndrome. J. Immunother. Cancer. 2018; 6 (1): 56. DOI: 10.1186/s40425-018-0343-9.

20. Henry B.M., Vikse J., Benoit S. et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020; 507: 167–173. DOI: 10.1016/j.cca.2020.04.027.

21. Connors J.M., Levy J.H. Thromboinflammation and the hypercoagulability of COVID-19. J. Thromb. Haemost. 2020; 18 (7):1559–1561. DOI: 10.1111/jth.14849.

22. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med. 2020; 8 (6): e46–47. DOI: 10.1016/S2213-2600(20)30216-2.

23. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI: 10.1016/S01406736(20)30183-5.

24. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395 (10223): 507–513. DOI: 10.1016/S0140-6736(20)30211-7.

25. Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. DOI: 10.1016/j.ebiom.2020.102763.

26. Wang J., Jiang M., Chen X., Montaner L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020; 108 (1): 17–41. DOI: 10.1002/JLB.3COVR0520-272R.

27. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8 (4): 420–422. DOI: 10.1016/S2213-2600(20)30076-X.

28. Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol. 2020; 20 (6): 345–346. DOI: 10.1038/s41577-020-0328-z.

29. Zhou Y., Fu B., Zheng X. et al. Abberant pathogenic GMCSF+T cells and inflammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv [Preprint. Posted: 2020, Feb. 20]. DOI: 10.1101/2020.02.12.945576.

30. Tanaka T., Narazaki M., Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8 (8): 959–970. DOI: 10.2217/imt-2016-0.

31. Choy E.H., De Benedetti F., Takeuchi T. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020; 16 (6): 335–345. DOI: 10.1038/s41584-020-0419-z.

32. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020; 19 (6): 102537. DOI: 10.1016/j.autrev.2020.102537.

33. Zhang C., Wu Z., Li J.W. et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist. Tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents. 2020; 55 (5): 105954. DOI: 10.1016/j.ijantimicag.2020.105954.

34. Calabrese L.H., Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 2014; 10 (12): 720–727. DOI: 10.1038/nrrheum.2014.127.

35. Насонов Е.Л., Лила А.М. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научнопрактическая ревматология. 2017; 55 (6): 590–599. DOI: 10.14412/1995-4484-2017-590-599

36. Kang S., Tanaka T., Narazaki M., Kishimoto T. Targeting Interleukin-6 signaling in clinic. Immunity. 2019; 50 (4): 1007–1023. DOI: 10.1016/j.immuni.2019.03.026.

37. Heink S., Yogev N., Garbers C. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 2017; 18 (1): 74–85. DOI: 10.1038/ni.3632.

38. Tian W., Jiang W., Yao J. et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020; 92 (10):1875–1883. DOI: 10.1002/jmv.26050.

39. Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020; 58 (3): 245–261. DOI: 10.14412/19954484-2020-245-261.

40. Henry B.M., de Oliveira M.H.S., Benoit S. et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin. Chem. Lab. Med. 2020; 58 (7): 1021–1028. DOI: 10.1515/cclm-2020-0369.

41. Coomes E.A., Haghbayan H. Interleukin-6 in COVID-19: A systemic review and meta-analysis. Rev. Med. Virol. 2020; e2141. DOI: 10.1002/rmv.2141.

42. Aziz M., Fatima R., Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J. Med. Virol. 2020: 92 (11): 2283–2285. DOI: 10.1002/jmv.25948.

43. Chen X., Zhao B., Qu Y. et al. Detectable serum SARSCoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. 2020; ciaa449. DOI: 10.1093/cid/ciaa449.

44. Li H., Liu L., Zhang D. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395 (10235): 1517–1520. DOI: 10.1016/S0140-6736(20)30920-X.

45. Насонов Е.Л., ред. Генно-инженерные биологические препараты в лечении ревматоидного артрита. М.: ИМА-ПРЕСС; 2013.

46. Насонов Е.Л. Применение тоцилизумаба при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2011; 49 (6): 46–56. DOI: 10.14412/19954484-2011-521.

47. Насонов Е.Л., Лила А.М. Эффективность и безопасность сарилумаба (полностью человеческие моноклональные антитела к рецептору интерлейкина 6) при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2019; 57 (5): 564–577. DOI: 10.14412/1995-4484-2019564-57.

48. Koch C., Barrett D., Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp. Rev. Clin. Immunol. 2019; 15 (8): 813–822. DOI: 10.1080/1744666X.2019.1629904.

49. Liu B., Li M., Zhou Z. et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun. 2020; 10: 102452. DOI: 10.1016/j.jaut.2020.102452.

50. González-Gay M.A., Mayo J., Castañeda S. et al. Tocilizumab: from the rheumatology practice to the fight against COVID-19, a virus infection with multiple faces. Expert Opin. Biol. Ther. 2020; 20 (7): 717–723. DOI: 10.1080/14712598.2020.1770222.

51. Luo P., Liu Y., Qiu L. et al. Tocilizumab treatment in COVID-19: a single center experience. J. Med. Virol. 2020; 92 (7): 814–818. DOI: 10.1002/jmv.25801.

52. Xu X., Han M., Li T. et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA. 2020; 117 (20): 10970–10975. DOI: 10.1073/pnas.2005615117.

53. Sciascia S., Aprà F., Baffa A. et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in severe patients with COVID-19. Clin. Exp. Rheumatol. 2020; 38 (3): 529–532.

54. Alattar R., Ibrahim T.B.H, Shaar S.H. et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J. Med. Virol. 2020: 92 (10): 2042–2049. DOI: 10.1002/jmv.25964.

55. Uysal B., Ikitimur H., Yavuzer S. et al. Tocilizumab challenge: A series of cytokine storm therapy experiences in hospitalized COVID-19 pneumonia patients. J. Med. Virol. 2020; 92 (11): 2648–2656. DOI: 10.1002/jmv.26111.

56. Marfella R., Paolisso P., Sardu C. et al. Negative impact of hyperglycaemia on tocilizumab therapy in COVID-19 patients. Diabetes Metab. [Preprint. Posted: 2020, May 21]. DOI: 10.1016/j.diabet.2020.05.005.

57. Morena V., Milazzo L., Oreni L. et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur. J. Intern. Med. 2020; 76: 36–42. DOI: 10.1016/j.ejim.2020.05.011.

58. Toniati P., Piva S., Cattalini M. et al. Brescia International Research and Training HUB (BIRTH). Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun. Rev. 2020; 19 (7):102568. DOI: 10.1016/j.autrev.2020.102568.

59. Price C.C., Altice F.L., Shyr Y. et al. Tocilizumab treatment for cytokine release syndrome in hospitalized COVID-19 patients. Chest [Preprint. Posted: 2020, Jun. 15]. DOI: 10.1016/j.chest.2020.06.006.

60. Issa N., Dumery M., Guisset O. et al. Feasibility of tocilizumab in ICU patients with COVID-19. J. Med. Virol. [Preprint. Posted: 2020, Jun. 2]. DOI: 10.1002/jmv.26110.

61. Campins L., Boixeda R., Perez-Cordon L. et al. Early tocilizumab treatment could improve survival among COVID-19 patients. Clin. Exp. Rheumatol. 2020; 38 (3): 578.

62. Hassoun A., Thottacherry E.D., Muklewicz J. et al. Utilizing tocilizumab for the treatment of cytokine release syndrome in COVID-19. J. Clin. Virol. 2020; 128: 104443. DOI: 10.1016/j.jcv.2020.104443.

63. Alberici F., Delbarba E., Manenti C. et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020; 97 (6): 10831088. DOI: 10.1016/j.kint.2020.04.002.

64. Roumier M., Paule R., Groh M. et al. Interleukin-6 blockade for severe COVID-19. medRxiv [Preprint. Posted: 2020, Apr. 22]. DOI: 10.1101/2020.04.20.20061861.

65. Quartuccio L., Sonaglia A., McGonagle D. et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care. medRxiv [Preprint. Posted: 2020, May 10]. DOI: 10.1101/2020.05.01.20078360.

66. Ramaswamy M., Mannam P., Comer R. et al. Off-label real world experience using tocilizumab for patients hospitalized with COVID-19 disease in a regional community health system: A Case-control study. medRxiv [Preprint. Posted: 2020, May 19]. DOI: 10.1101/2020.05.14.20099234.

67. Somers E.C., Eschenauer G.A., Troost J.P. et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin. Infect. Dis. 2020; ciaa954. DOI: 10.1093/cid/ciaa954.

68. Capra R., De Ross N., Mattioli F. et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur. J. Intern. Med. 2020; 76: 31–35. DOI: 10.1016/j.ejim.2020.05.009.

69. Klopfenstein T., Zayet S., Lohse A. et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med. Mal. Infect. 2020; 50 (5): 397–400. DOI: 10.1016/j.medmal.2020.05.001.

70. Martinez-Sanz J., Muriel A., Ron R. et al. Effects of tocilizumab on mortality in hospitalized patients with COVID-19: A multicenter cohort study. medRxiv [Preprint. Posted: 2020, Jun. 09]. DOI: 10.1101/2020.06.08.20125245.

71. Colaneri M., Bogliolo L., Valsecchi P. et al. the COVID IRCCS San Matteo Pavia Task Force. Tocilizumab for treatment of severe COVID-19 patients: Preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020; 8 (5): 695. DOI: 10.3390/microorganisms8050695.

72. Kewan T., Covut F., Al–Jaghbeer M.J. et al. Tocilizumab for treatment of patients with severe COVID–19: A retrospective cohort study. EClinicalMedicine. 2020; 24: 100418. DOI: 10.1016/j.eclinm.2020.100418.

73. Petrak R., Skorodin N., Van Hise N. et al. Tocilizumab as a therapeutic agent for critically Ill patients infected with SARS-CoV-2. medRxiv [Preprint. Posted: 2020, Jun. 8]. DOI: 10.1101/2020.06.05.20122622.

74. Mastroianni A., Greco S., Apuzzo G. et al. Subcutaneous tocilizumab treatment in patients with severe COVID-19related cytokine release syndrome: An observational cohort study. EClinicalMedicine. 2020; 24: 100410. DOI: 10.1016/j.eclinm.2020.100410.

75. Guaraldi G., Meschiari M., Cozzi-Lepri A. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (8): e474–484. DOI: 10.1016/S2665-9913(20)30173-9.

76. Perrone F., Piccirillo M.C., Ascierto P.A. et al. Tocilizumab for patients with COVID-19 pneumonia. The TOCIVID-19 prospective phase 2 trial. medRxiv [Preprint. Posted: 2020, Jul. 2]. DOI: 10.1101/2020.06.01.20119149.

77. Rossotti R., Travi G., Ughi N. et al. Safety and efficacy of anti-IL-6-receptor tocilizumab use on severe and critical patients affected by coronavirus disease 2019: a comparative analysis. J. Infect. 2020; 81 (4): e11–17. DOI: 10.1016/j.jinf.2020.07.008.

78. Canziani L.M., Trovati S., Brunetta E. et al. Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: A retrospective case-control survival analysis of 128 patients. J. Autoimmun. [Preprint. Posted: 2020, Jul. 8]. DOI: 10.1016/j.jaut.2020.102511.

79. De Rossi N., Scarpazza C., Filippini C. et al. Early use of low dose tocilizumab in patients with COVID-19: A retrospective cohort study with a complete follow-up. EClinical Medicine. 2020; 25: 100459. DOI: 10.1016/j.eclinm.2020.100459.

80. Campochiaro C., Della-Torre E., Cavalli G. et al. for the TOCI-RAF Study Group. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur. J. Intern. Med. 2020; 76: 43–49. DOI: 10.1016/j.ejim.2020.05.021.

81. Carvalho V., Turon R., Goncalves B. et al. Effects of tocilizumab in critically ill Patients with COVID-19: A quasi-experimental study. medRxiv [Preprint. Posted: 2020, Jul. 15]. DOI: 10.1101/2020.07.13.20149328.

82. Mikulska M., Nicolini L.A., Signori A. et al. Tocilizumab and steroid treatment in patients with severe COVID-19 pneumonia. medRxiv [Preprint. Posted: 2020, Jun. 26]. DOI: 10.1101/2020.06.22.20133413.

83. Ip A., Berry D.A., Hansen E. et al. Hydroxychloroquine and tocilizumab therapy in COVID-19 patients – An observational study. medRxiv [Preprint. Posted: 2020, May 25]. DOI: 10.1101/2020.05.21.20109207.

84. Wadud N., Ahmed N., Shergil M.M. et al. Improved survival outcome in SARs-CoV-2 (COVID-19) acute respiratory distress syndrome patients with tocilizumab administration. medRxiv [Preprint. Posted: 2020, May 16]. DOI: 10.1101/2020.05.13.20100081.

85. Rojas-Marte G.R., Khalid M., Mukhtar O. et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab – A case-controlled study. QJM. 2020; 113 (8): 546–550. DOI: 10.1093/qjmed/hcaa206.

86. Ramiro S., Mostard R.L.M., Magro-Checa C. et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann. Rheum. Dis. 2020; 79 (9): 1143–1151. DOI: 10.1136/annrheumdis-2020-218479.

87. Moreno Garcia E., Caballero V.R., Albiach L. et al. Tocilizumab is associated with reduction of the risk of ICU admission and mortality in patients with SARS-CoV-2 infection. medRxiv [Preprint. Posted: 2020, May 16]. DOI: 10.1101/2020.06.05.20113738.

88. Kaye A.G., Siegel R. The efficacy of IL-6 inhibitor tocilizumab in reducing severe COVID-19 mortality: A systematic review. medRxiv [Preprint. Posted: 2020, Sep. 3]. DOI: 10.1101/2020.07.10.20150938.

89. Boregowda U., Perisetti A., Nanjappa A. et al. Addition of tocilizumab to the standard of care reduces mortality in severe COVID-19: A systematic review and meta-analysis. medRxiv [Preprint. Posted: 2020, Sep. 3]. DOI: 10.1101/2020.07.10.20150680.

90. Gremese E., Cingolani A., Bosello S.L. et al. Sarilumab use in severe SARS-CoV-2 pneumonia. medRxiv [Preprint. Posted: 2020, May 18]. DOI: 10.1101/2020.05.14.20094144.

91. Della-Torre E., Campochiaro C., Cavalli G. et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann. Rheum. Dis. 2020; 79 (10): 1277–1285. DOI: 10.1136/annrheumdis-2020-218122.

92. Benucci M., Giannasi G., Cecchini P. et al. COVID-19 pneumonia treated with Sarilumab: A clinical series of eight patients. J. Med. Virol. [Preprint. Posted: 2020, May 30]. DOI: 10.1002/jmv.26062.

93. Regeneron/Sanofi. Regeneron and Sanofi Begin Global Kevzara (Sarilumab) clinical trial program in patients with severe COVID-19. Available at: https://investor.regeneron.com/news-releases/news-release-details/regeneron-and-sanofi-begin-global-kevzarar-sarilumab-clinical

94. Gritti G., Raimondi F., Ripamonti D. et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv [Preprint. Posted: 2020, Jun. 20]. DOI: 10.1101/2020.04.01.20048561.

95. Sinha P., Matthay M.A., Calfee C.S. Is a ‘‘cytokine storm’’ relevant to COVID-19? JAMA Intern. Med. 2020; 180 (9): 1152–1154. DOI: 10.1001/jamainternmed.2020.3313.

96. Scherger S., Henao-Martinez A., Franco-Parades C., Shapiro L. Rethinking interleukin-6 blockade for treatment of COVID-19. Med. Hypothesis. 2020; 144: 110053. DOI: 101016/j.methy.2020.110553.

97. Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020; 19 (7): 102567. DOI: 10.1016/j.autrev.2020.102567.

98. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934–943. DOI: 10.1001/jamainternmed.2020.0994.

99. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020; 71 (15): 762–768. DOI: 10.1093/cid/ciaa248.

100. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI: 10.1016/S0140-6736(20)30566-3.

101. Mo P., Xing Y., Xiao Y. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. 2020; ciaa270. DOI: 10.1093/cid/ciaa270.

102. Cummings M.J., Baldwin M.R., Abrams D. et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395 (10239): 1763–1770. DOI: 10.1016/S0140-6736(20)31189-2.

103. Calfee C.S., Delucchi K., Parsons P.E. et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014; 2 (8): 611–620. DOI: 10.1016/S2213-2600(14)70097-9.

104. Famous K.R., Delucchi K., Ware L.B. et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 2017; 195 (3): 331–338. DOI: 10.1164/rccm.201603-0645OC.

105. Sinha P., Delucchi K.L., Thompson B.T. et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 2018; 44 (11): 1859–1869. DOI: 10.1007/s00134-018-5378-3.

106. Maude S., Barrett D.M. Current status of chimeric antigen receptor therapy for haematological malignancies. Br. J. Haematol. 2016; 172 (1): 11–22. DOI: 10.1111/bjh.13792.

107. Shimamoto K., Ito T., Ozaki Y. et al. Serum interleukin 6 before and after therapy with tocilizumab is a principal biomarker in patients with rheumatoid arthritis. J. Rheumatol. 2013; 40 (7): 1074–1081. DOI: 10.3899/jrheum.121389.

108. Diaz-Torne C., Ortiz M.D.A., Moya P. et al. The combination of IL-6 and its soluble receptor is associated with the response of rheumatoid arthritis patients to tocilizumab. Semin. Arthritis Rheum. 2018; 47 (6): 757–764. DOI: 10.1016/j.semarthrit.2017.10.022.

109. Berti A., Cavalli G., Campochiaro C. et al. Interleukin-6 in ANCA-associated vasculitis: Rationale for successful treatment with tocilizumab. Semin. Arthritis Rheum. 2015; 45 (1): 48–54. DOI: 10.1016/j.semarthrit.2015.02.002.

110. Umare V., Nadkarni A., Nadkar M. et al. Do high sensitivity C-reactive protein and serum interleukin-6 levels correlate with disease activity in systemic lupus erythematosuspatients? J. Postgrad. Med. 2017; 63 (2): 92–95. DOI: 10.4103/0022-3859.188550.

111. van Gameren M.M., Willemse P.H., Mulder N.H. et al. Effects of recombinant human interleukin-6 in cancer patients: a phase I–II study. Blood. 1994; 84 (5): 1434–1441.

112. Velazquez-Salinas L., Verdugo-Rodriguez A., Rodriguez L.L., Borca M.V. The role of interleukin 6 during viral infections. Front. Microbiol. 2019; 10: 1057. DOI: 10.3389/fmicb.2019.01057.

113. Horby P., Lim W.S., Emberson J.R. Dexamethasone in hospitalized patients with Covid-19 – Preliminary report. New Engl. J. Med. [Preprint. Posted: 2020, Jul. 17]. DOI: 10.1056/NEJMoa2021436.

114. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia. Available at: https://www.roche.com/investors/updates/inv-update-2020-07-29.htm

115. Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017; 17 (4): 233–247. DOI: 10.1038/nri.2017.1.

116. Ingraham N.E., Lotfi-Emran S., Thielen B.K. et al. Immunomodulation in COVID-19. Lancet Respir. Med. 2020; 8 (6): 544–546. DOI: 10.1016/S2213-2600(20)30226-5.

117. Lu L., Zhang H., Zhan M. et al. Preventing mortality in COVID-19 patients: which cytokine to target in a raging storm. Front. Cell Develop. Biol. 2020; 8: 677. DOI: 10.3389/fcell.2020.00677.

118. Schett G., Elewaut D., McInnes I.B. et al. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat. Med. 2013; 19 (7): 822–824. DOI: 10.1038/nm.3260.

119. Насонов Е.Л. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018; 56 (Прил. 1): 19–27. DOI: 10.14412/1995-44842018-19-27.

120. van de Veerdonk F.L., Netea M.G. Blocking IL-1 to prevent respiratory failure in COVID-19. Crit. Care. 2020; 24 (1): 445. DOI: 10.1186/s13054-020-03166-0.

121. Feldmann M., Maini R.N., Woody J.N. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020; 395 (10234): 1407–1409. DOI: 10.1016/S0140-6736(20)30858-8.

122. Lang F.M., Lee K.M., Teijaro J.R. et al. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat. Rev. Immunol. 2020; 20 (8): 507–514. DOI: 10.1038/s41577-020-0357-7.

123. Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol. 2020; 20 (6): 345–346. DOI: 10.1038/s41577-020-0328-z.

124. McClain K.L., Allen C.E. Fire behind the fury: IL-18 and MAS. Blood. 2018; 131 (13): 1393–1394. DOI: 10.1182/blood-2018-02-828186.

125. Risitano A.M., Mastellos D.C., Huber-Lang M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 2020; 20 (6): 343–344. DOI: 10.1038/s41577-0200320-7.

126. Schwartz D.M., Kanno Y., Villarino A. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017; 16 (12): 843–862. DOI: 10.1038/nrd.2017.201.

127. Насонов Е.Л., Лила А.М. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019; 57 (1): 8–16. DOI: 10.14412/1995-4484-2019-8-16

128. Насонов Е.Л., Лила А.М. Барицитиниб: новые возможности фармакотерапии ревматоидного артрита и других иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2020; 58 (3): 304–316. DOI: 10.14412/1995-4484-2020-304-316.

129. Richardson P., Griffin I., Tucker C. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020; 395 (10223): e30–31. DOI: 10.1016/S0140-6736(20)30304-4.

130. Stebbing J., Phelan A., Griffin I. et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020; 20 (4): 400–402. DOI: 10.1016/S14733099(20)30132-8.

131. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020; 395 (10223): 473–475. DOI: 10.1016/S0140-6736(20)30317-2.

132. Oray M., Abu Samra K., Ebrahimiadib N. et al. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016; 15 (4): 457–465. DOI: 10.1517/14740338.2016.1140743.

133. Meyerowitz E.A., Vannier A.G.L., Friesen M.G.N. et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020; 34 (5): 6027–6037. DOI: 10.1096/fj.202000919.

134. Aouba A., Baldolli A., Geffray L. et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann. Rheum. Dis. 2020; 79 (10): 1381–1382. DOI: 10.1136/annrheumdis-2020217706.

135. Cavalli G., De Luca G., Campochiaro C. et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325–331. DOI: 10.1016/S26659913(20)30127-2.

136. Navarro-Millán I., Sattui S.E., Lakhanpal A. et al. Use of anakinra to prevent mechanical ventilation in severe COVID-19: A case series. Arthritis Rheumatol. [Preprint. Posted: 2020, Jun. 30]. DOI: 10.1002/art.41422.

137. Franzetti M., Pozzetti U., Carugati M. et al. Interleukin-1 receptor antagonist anakinra in association with remdesivir in severe coronavirus disease 2019: A case report. Int. J. Infect. Dis. 2020; 97: 215–218. DOI: 10.1016/j.ijid.2020.05.050.

138. Dimopoulos G., de Mast Q., Markou N. et al. Favorable anakinra responses in severe covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. 2020; 28 (1): 117–123.e1. DOI: 10.1016/j.chom.2020.05.007.

139. Day J.W., Fox T.A., Halsey R. et al. Interleukin-1 blockade with Anakinra in acute leukaemia patients with severe COVID-19 pneumonia appears safe and may result in clinical improvement. Br. J. Haematol. 2020; 190 (2): e80–83. DOI: 10.1111/bjh.16873.

140. Pontali E., Volpi S., Antonucci G. et al. Safety and efficacy of early high-dose IV anakinra in severe COVID-19 lung disease. J. Allergy Clin. Immunol. 2020; 146 (1): 213–215. DOI: 10.1016/j.jaci.2020.05.002.

141. Huet T., Beaussier H., Voisin H. et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020; 2 (7): e393–400. DOI: 10.1016/S2665-9913(20)30164-8.

142. Cauchois R., Koubi M., Delarbre D. et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl. Acad. Sci. USA. 2020; 117 (32): 18951–18953. DOI: 10.1073/pnas.2009017117.

143. Shakoory B., Carcillo J.A., Chatham W.W. et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit. Care Med. 2016; 44 (2): 275–281. DOI: 10.1097/CCM.0000000000001402.

144. Eloseily E.M., Weiser P., Crayne C.B. et al. Benefit of Anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020; 72 (2): 326–334. DOI: 10.1002/art.41103.

145. Mehta P., Cron R.Q., Hartwell J. et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020; 2 (6): e358–367. DOI: 10.1016/S2665-9913(20)30096-5.

146. Monteagudo L.A., Boothby A., Gertner E. Continuous intravenous Anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020; 2 (5): 276–282. DOI: 10.1002/acr2.11135.

147. Алекберова З.С., Насонов Е.Л. Перспективы применения колхицина в медицине: новые данные. Научнопрактическая ревматология. 2020; 58 (2): 183–190. DOI: 10.14412/1995-4484-2020-183-190.

148. Recalcati S., Piconi S., Franzetti M. et al. Colchicin treatment of COVID-19 presenting with cutaneous rash and myopericarditis. Dermatol. Ther. 2020; e13891. DOI: 10.1111/dth.13891.

149. Della-Torre E., Della-Torre F., Kusanovic M. et al. Treating COVID-19 with colchicine in community healthcare setting. Clin. Immunol. 2020; 217: 108490. DOI: 10.1016/j.clim.2020.108490.

150. Cantini F., Niccoli L., Matarrese D. et al. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 2020; 81 (2): 318–356. DOI: 10.1016/j.jinf.2020.04.017.

151. Cao Y., Wei J., Zou L. et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol. 2020; 146 (1): 137–146.e3. DOI: 10.1016/j.jaci.2020.05.019.

152. La Rosée F., Bremer H.C., Gehrke I. et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020; 34 (7): 1805–1815. DOI: 10.1038/s41375-020-0891-0.

153. Wang J., Wang Y., Wu L. et al. Ruxolitinib for refractory/ relapsed hemophagocytic lymphohistiocytosis. Haematologica. 2019; 105 (5): e210–212. DOI: 10.3324/haematol.2019.222471.

154. Ahmed A., Merrill S.A., Alsawah F. et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 2019; 6 (12): e630–637. DOI: 10.1016/S23523026(19)30156-5.

155. Goldsmith S.R., Saif Ur Rehman S., Shirai C.L. et al. Resolution of secondary hemophagocytic lymphohistiocytosis after treatment with the JAK1/2 inhibitor ruxolitinib. Blood Adv. 2019; 3 (23): 4131–4135. DOI: 10.1182/bloodadvances.2019000898.

156. Wong E.K.S., Kavanagh D. Diseases of complement dysregulation – an overview. Semin. Immunopathol. 2018; 40 (1): 49–64. DOI: 10.1007/s00281-017-0663-8.

157. Diurno F., Numis F.G., Porta G. et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (7): 4040–4047. DOI: 10.26355/eurrev_202004_20875.

158. Mastaglio S., Ruggeri A., Risitano A.M. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol. 2020; 215: 108450. DOI: 10.1016/j.clim.2020.108450.

159. Hamilton J.A. GM-CSF in inflammation. J. Exp. Med. 2020; 217 (1): e20190945. DOI: 10.1084/jem.20190945.

160. Temesgen Z., Assi M., Vergidis P. et al. First clinical use of lenzilumab to neutralize GM-CSF in patients with severe COVID-19 pneumonia. medRxiv [Preprint. Posted: 2020, Jun. 14]. DOI: 10.1101/2020.06.08.20125369.

161. Melody M., Nelson J., Hastings J. et al. Case report: use of lenzilumab and tocilizumab for the treatment of coronavirus disease 2019. Immunotherapy. 2020; 12 (15): 1121–1126. DOI: 10.2217/imt-2020-0136.

162. De Luca G., Cavalli G., Campochiaro C. et al. GM-CSF blockade with marvilimumab in severe COVID-19 pneumonia ans systemiv hyperinflammation: a single-centre, prospective cphort study. Lancet Rheumatol. 2020; 2 (8): 3465–3473. DOI: 10.1016/S2665-9913(20)30170-3.

163. Crotti C., Agape E., Becciolini A. et al. Targeting granulocyte-monocyte colony-stimulating factor signaling in rheumatoid arthritis: Future prospects. Drugs. 2019; 79 (16): 1741–1755. DOI: 10.1007/s40265-019-01192-z.

164. Perez E.E., Orange J.S., Bonilla F. et al. Update on the use of immunoglobulin in human disease: a review of evidence. J. Allergy Clin. Immun. 2017; 139 (3, Suppl.): S1–46. DOI: 10.1016/j.jaci.2016.09.023.

165. Nguyen A.A., Habiballah S.B., Platt C.D. et al. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin. Immunol. 2020; 216: 108459. DOI: 10.1016/j.clim.2020.108459.

166. Xie Y., Cao S., Dong H. et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J. Infect. 2020; 81 (2): 318–356. DOI: 10.1016/j.jinf.2020.03.044.

167. Cao W., Liu X., Bai T. et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect. Dis. 2020; 7 (3): ofaa102. DOI: 10.1093/ofid/ofaa102.


Для цитирования:


Насонов Е.Л. Коронавирусная болезнь-2019 (COVID-19): значение ингибиторов IL-6. Пульмонология. 2020;30(5):629-644. https://doi.org/10.18093/0869-0189-2020-30-5-629-644

For citation:


Nasonov E.L. Coronavirus disease-2019 (COVID-19): value of IL-6 inhibitors. PULMONOLOGIYA. 2020;30(5):629-644. https://doi.org/10.18093/0869-0189-2020-30-5-629-644

Просмотров: 1818


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)