Preview

PULMONOLOGIYA

Advanced search

COVID-19 in individuals adapted to aerobic exercise

https://doi.org/10.18093/0869-0189-2020-30-5-553-560

Abstract

Analysis of COVID-19 features in individuals who regularly practice aerobic training. Methods. Asymptomatic persons and patients with COVID-19 older than 30 years, 293 people (180 men and 113 women), 214 of them – inhabitants of the Moscow region (the beginning of the sampling – 2nd decade of April 2020) and 79 – inhabitants of the Belgorod region (the beginning of the sampling – 2nd decade of May 2020), adapted (27 people 1st group) and unadapted (266 – control group) to aerobic training (AT). Computer tomography of the chest, RNA test for SARS-CoV-2 in smears from the nasopharynx-oropharynx, the clinical blood sample and level of antibodies to SARS-CoV-2 were studied. The criterion for adaptation to aerobic loads was considered compliance with the rules of the American Heart Association, 2008. Results. Adapted to AT individuals, in contrast to the control group, characterized with the prevalence of asymptomatic (p = 0.045) and absence of severe forms of COVID-19, limited cataral simptoms of the disease (p < 0.001), rare pneumonia with absence (1) or presence (2) of acute respiratory failure (p1 = 0,028; p2 = 0,034), along with lower prevalence of diseases, potentiating this infection (p = 0.03). Conclusion. Patients adapted to AT have less severe course of COVID-19.

About the Authors

A. Yu. Tret'yakov
Federal Belgorod National Research University, Ministry of Education and Science of Russia
Russian Federation

Andrey Yu. Tret’yakov – Doctor of Medicine, Professor, Medical Institute

ul. Pobedy 85, Belgorod, 308015
tel.: 8-910-228-69-95



S. P. Zakharchenko
Federal Belgorod National Research University, Ministry of Education and Science of Russia
Russian Federation

Svetlana P. Zakharchenko – Candidate of Medicine, Senior Researcher, Medical Institute

ul. Pobedy 85, Belgorod, 308015
tel.: 8-4722-30-12-11



L. V. Romasenko
V.P.Serbskiy National Medical Research Center оf Psychiatry аnd Narcology, Healthcare Ministry of Russia
Russian Federation

Lyubov’ V. Romasenko – Doctor of Medicine, Professor, Нead of Psychosomatic Disorders Department, Borderline Psychiatry Department

Kropotkinsky per. 23, Moscow, 119034
tel.: 8-499-248-75-96



A. V. Dyatlova
State Institution “City Сlinic No.212”, Moscow Healthcare Department
Russian Federation

Alena V. Dyatlova – Physician, Department of Тherapy No.1

Solntsevsky Prospekt 11a, Moscow, 119620
tel. 8-903-673-50-95



A. V. Zhabskaya
Federal Belgorod National Research University, Ministry of Education and Science of Russia; Belgorod Сity Municipal Нospital No.2
Russian Federation

Aleksandra V. Zhabskaya – Postgraduate Student, Medical Institute, Federal Belgorod National Research University, Ministry of Education and Science of Russia; Radiologist, Belgorod Сity Municipal Нospital No. 2

ul. Pobedy 85, Belgorod, 308015
ul. Gubkina 46, Belgorod, 308036 



O. V. Ermilov
Federal Belgorod National Research University, Ministry of Education and Science of Russia; Saint Ioasaf Belgorod Region Clinical Hospital
Russian Federation

Oleg V. Ermilov, Assistant – Medical Institute, Federal Belgorod National Research University, Ministry of Education and Science of Russia; Pulmonologist, Department of Pulmonology, Saint Ioasaf Belgorod Region Clinical Hospital

ul. Pobedy 85, Belgorod, 308015
ul. Nekrasova 8/9, Belgorod, 308007
tel.: 8(4722)50-42-32; 8-951-130-66-97



M. A. Tret'yakov
Federal Belgorod National Research University, Ministry of Education and Science of Russia
Russian Federation

Mikhail A. Tret’yakov

ul. Pobedy 85, Belgorod, 308015



D. D. Chentsova
The Peoples’ Friendship University of Russia
Russian Federation

Dar’ya D. Chentsova – Physician, Clinical аnd Diagnostic Center

ul. Miklukho-Maklaya 6, Moscow, 117198
tel: +7 (495) 434-24-91



References

1. Gazenko O., Meerson F., Pshennikova M. [Physiology of adaptation processes]. Moscow: Nauka; 1986 (in Russian).

2. Halabchi F., Ahmadinejad Z., Selk-Ghaffari M. COVID-19 Epidemic: exercise or not to exercise; that is the question! Asian. J. Sports. Med. 2020; 11 (1): e102630. DOI: 10.5812/asjsm.102630.

3. Wackerhage H., Everett R., Krüger K. et al. Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Dtsch. Z. Sportmed. 2020; 71 (5): e1–12. DOI: 10.5960/dzsm.2020.441.

4. Pashukova T.I., Dopira A.I., D’yakonov G.V. [Psychological research: a workshop on general psychology for students of pedagogical universities]. Moscow: Institut prakticheskoy psikhologii; 1996 (in Russian).

5. Paterlini M. On the front lines of coronavirus: the Italian response to covid-19. Br. Med. J. 2020; 368: m1065. DOI: 10.1136/bmj.m1065.

6. Meerson F.Z., Pshennikova M.G. [Adaptation to stressful situations and physical exertion]. M.: Meditsina; 1988 (in Russian).

7. Toledo A.C., Magalhaes R.M., Hizume D.C. et al. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur. Respir. J. 2012; 39 (2): 254–264. DOI: 10.1183/09031936.00003411.

8. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARSCoV-2: A double-edged sword? FASEB J. 2020; 34 (5): 6017–6026. DOI: 10.1096/fj.202000782.

9. Tedjasaputra V., Bouwsema M.M., Stickland M.K. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise. J. Physiol. 2016; 594 (15): 4359–4370. DOI: 10.1113/JP272037.

10. Foster D.J., Ravikumar P., Bellotto D.J. et al. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am. J. Lung Cell. Mol. Physiol. 2010; 298 (3): L392–403. DOI: 10.1152/ajplung.00041.2009.

11. Yilmaz C., Ravikumar P., Gyawali D. et al. Alveolarcapillary adaptation to chronic hypoxia in the fatty lung. Acta Physiol. 2015; 213 (4): 933–946. DOI: 10.1111/apha.12419.

12. Dizon L.A., Seo D.Y., Kim H.K. et al. Exercise perspective on common cardiac medications. Integr. Med. Res. 2013; 2 (2): 49–55. DOI: 10.1016/j.imr.2013.04.006.

13. Agarwal D., Welsch M.A., Keller J.N., Francis J. Chronic exercise modulates RAS components and improves balance between pro-and anti-inflammatory cytokines in the brain of SHR. Basic Res. Cardiol. 2011; 106 (6): 1069–1085. DOI: 10.1007/s00395-011-0231-7.

14. Zhang P., Zhu L., Cai J. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020; 126 (12): 1671–1681. DOI: 10.1161/CIRCRESAHA.120.317134.

15. Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors – lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020; 43 (7): 648–654. DOI: 10.1038/s41440-020-0455-8.

16. Magalhães D.M., Nunes-Silva A., Rocha G.C. et al. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Heliyon. 2020; 6 (1): e03208. DOI: 10.1016/j.heliyon.2020.e03208.

17. Poos M.I., Costello R., Carlson-Newberry S.J. Military strategies for sustainment of nutrition and immune function in the field. Washington, DC: The National Academies Press, Institute of Medicine; 1999. DOI: 10.17226/6450.

18. Timmons B.W., Cieslak T. Human natural killer cell subsets and acute exercise: a brief review. Exerc. Immunol. Rev. 2008; 14: 8–23.

19. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019; 8 (3): 201–217. DOI: 10.1016/j.jshs.2018.09.009.

20. Campbell J.P. Infekt nach Marathon? Mythos widerlegt! Dtsch. Med. Wochensch. 2018; 143 (12): 853–853. DOI: 10.1055/a-0598-1219.

21. Gleeson M., Pyne D.B., Austin J.P. et al. Epstein–Barr virus reactivation and upper-respiratory illness in elite swimmers. Med. Sci. Sports Exerc. 2002; 34 (3): 411–417. DOI: 10.1097/00005768-200203000-00005.

22. Nieman D.C. Exercise, upper respiratory tract infection, and the immune system. Med. Sci. Sports Exerc. 1994; 26 (2): 128–139. DOI: 10.1249/00005768-199402000-00002.

23. Campbell J.P., Turner J.E. There is limited existing evidence to support the common assumption that strenuous endurance exercise bouts impair immune competency. Expert Rev. Clin. Immunol. 2019; 15 (2): 105–109. DOI: 10.1080/1744666X.2019.1548933.

24. Estruel-Amades S., Camps-Bossacoma M., Massot-Cladera M. et al. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci. Rep. 2020; 10 (1): 967. DOI: 10.1038/s41598-020-57783-4.

25. Combes A., Dekerle J., Dumont X. et al. Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not. Respir. Res. 2019; 20 (1): 12. DOI: 10.1186/s12931-019-0978-1.


Review

For citations:


Tret'yakov A.Yu., Zakharchenko S.P., Romasenko L.V., Dyatlova A.V., Zhabskaya A.V., Ermilov O.V., Tret'yakov M.A., Chentsova D.D. COVID-19 in individuals adapted to aerobic exercise. PULMONOLOGIYA. 2020;30(5):553-560. https://doi.org/10.18093/0869-0189-2020-30-5-553-560

Views: 1136


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)