Pulmonary rehabilitation of patients with coronavirus infection COVID-19, clinical examples
https://doi.org/10.18093/0869-0189-2020-30-5-715-722
Abstract
About the Authors
N. N. MeshcheryakovaRussian Federation
Natalya N. Meshcheryakova – Candidate of Medicine, Associate Professor of the Department of Pulmonology, Faculty of Postgraduate Physician Training, N.I.Pirogov Russian National Research Medical University, Healthcare Ministry of Russia; pulmonologist at “IntegraMed” Respiratory Medicine Clinic
Ostrovityanova 1, Moscow, 117997
Mazhorov per. 7, Moscow, 107023
tel.: (903) 744-24-63
A. S. Belevskiy
Russian Federation
Andrey S. Belevsky – Doctor of Medicine, Professor, Head of the Department of Pulmonology, Faculty of Postgraduate Physician Training
Ostrovityanova 1, Moscow, 117997
tel.: (495) 963-24-67
A. V. Kuleshov
Russian Federation
Andrey V. Kuleshov – Candidate of Medicine, Chief Physician
Mazhorov per. 7, Moscow, 107023
tel.: (903) 130-59-02
References
1. Ministry of Health of the Russian Federation. [Temporary guidelines: Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7 (03.06.2020)]. Available at: https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf (in Russian).
2. Baig A.M. Khaleeq A., Ali U. et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020; 11 (7): 995–998. DOI: 10.1021/acschemneuro.0c00122.
3. Behzadi M.A., Leyva-Grado V.H. Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and Middle East respiratory syndrome coronavirus infections. Front. Microbiol. 2019; 10: 1327. DOI: 10.3389/fmicb.2019.01327.
4. Covernment of Canada. Coronavirus disease (COVID-19): Symptoms and treatment. Available at: https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/symptoms.html
5. CDC: Center for Disease Control and Prevention. Coronavirus disease 2019. Available at: https://www.cdc.gov/coronavirus/2019-ncov/index.html
6. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513. DOI: 10.1016/S0140-6736(20)30211-7.
7. Nici L., Donner C., Wouters E. et al. American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2006; 173 (12): 1390–1413. DOI: 10.1164/rccm.200508-1211st.
8. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. Update 2013. Available at: https://goldcopd.org/
9. Isaev G.G. [Respiratory muscle physiology]. In: Breslav I.S., Isaev G.G., eds. [Respiratory Physiology]. St. Petersburg: Nauka; 1994: 178–197 (in Russian).
10. McConnell A. Breathe Strong Perform Better. Human Kinetics; 2011.
11. American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002; 166 (4): 518–624. DOI: 10.1164/rccm.166.4.518.
12. Black L.F., Hyatt R.E. Maximal inspiratory pressures: normal values and relationship to age and sex. Am. Rev. Respir. Dis. 1969; 99: 696–702.
13. Caine M.P., McConnell A.K. Development and evaluation of a pressure threshold inspiratory muscle trainer for use in the context of sports performance. J. Sports Engineer. 2000; 3 (3): 149–159. DOI: 10.1046/j.1460-2687.2000.00047.x.
14. Edwards A.M., Wells C., Butterly R. Concurreny inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. Br. J. Sports Med. 2004; 42 (10): 523–527. DOI: 10.1136/bjsm.2007.045377.
15. Enright S.J., Unnithan V.B., Heward C. et al. Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Phys. Ther. 2006; 86 (3): 345–354. DOI: 10.1093/ptj/86.3.345.
16. Epstein S.K. An overview of respiratory muscle function. Clin. Chest. Med. 1994; 15 (4): 619–639.
17. Gregory C.M., Bickel C.S. Recruitment pattern in Himan skeletal muscle during electrical stimulation. Phys. Ther. 2005; 85 (4): 358–364. DOI: 10.1093/ptj/85.4.358.
18. Requena Sánchez B., Padial Puche P., Gonzalez-Badillo J.J. Percutaneous electrical stimulation in strength training: an update. J. Strength Cond. Res. 2005; 19 (2): 438–441.
19. Geddes E.L., O’Brien K., Reid W.D. et al. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: an update of a systematic review. Respir. Med. 2008; 102 (12): 1715–1729. DOI: 10.1016/j.rmed.2008.07.005.
20. Gosselink R., De Vos J., van den Heuvel S.P. et al. Impact of inspiratory muscle training in patients with COPD: what is the evidence? Eur. Respir. J. 2011; 37 (2): 416–425. DOI: 10.1183/09031936.00031810.
21. O’Brien K., Geddes E.L., Reid W.D. et al. Inspiratory muscle training compared with other rehabilitation interventions in chronic obstructive pulmonary disease: A systematic review update. J. Cardiopulm. Rehabil. Prev. 2008; 28 (2): 128–141. DOI: 10.1097/01.hcr.0000314208.40170.00.
22. Lötters F., van Tol B., Kwakkel G. et al. Effects of controlled inspiratory muscle training in patients with COPD: a meta-analysis. Eur. Respir. J. 2002; 20 (3): 570–576. DOI: 22. Lötters F., van Tol B., Kwakkel G. et al. Effects of controlled inspiratory muscle training in patients with COPD: a meta-analysis. Eur. Respir. J. 2002; 20 (3): 570–576. DOI: 10.1183/09031936.02.00237402.
23. Hill K., Jenkins S.C., Philippe D.L. et al. High-intensity inspiratory muscle training in COPD. Eur. Respir. J. 2006; 27 (6): 1119–1128.
24. Meshcheriakova N., Belevskiy A., Cherniak A. et al. Threshold PEP and IMT devices (PID) for COPD patient respiratory training. Eur. Respir. J. [Abstracts 16 th ERS Annual Congress. Munich, Germany, 2–6 September, 2006]. 2006; 28 (Suppl. 50): S553.
25. Kempainen R.R., Milla C., Duniz J. et al. Comparison of setting used for high-freguency chest-wall compression in cyctic fibrosis. Respir. Care. 2010; 55 (6): 782–783.
26. Allan J.S., Garrity G.M., Donahue D.M. High-freguency chest-wall compression during the 48 hours following thoracic surgery. Respir. Care. 2009; 54 (3): 340–343.
27. Nicolini A., Cardini F., Landucci N. et al. Effectiveness of treatment with high-frequency chest wall ascillation in patients with bronchiectasis. BMC Pulm. Med. 2013; 13 (1): 21. DOI: 10.1186/1471-2466-13-21.
28. Gloeck R., Heinzeimann I., Baeuerle S. et al. Effects of whole body vibration in patients with chronic obstructive pulmonary disease: A randomized controlled trial. Respir. Med. 2012; 106 (1): 75–83. DOI: 10.1016/j.rmed.2011.10.021.
29. Brugliera L., Spina A., Castellazzi P. et al. Rehabilitation of COVID-19 patients. J. Rehabil. Med. 2020; 52 (4): jrmo00046. DOI: 10.2340/16501977-2678.
30. Bryant M.S., Fedson S.E., Sharafkhaneh A. Using telehealth cardiopulmonary rehabilitation during the COVID-19 pandemic. J. Med. Syst. 2020; 44 (7): 125. DOI: 10.1007/s10916-020-01593-8.
31. De Biase S., Cook L., Skelton D.A. et al. The COVID-19 rehabilitation pandemic. Age Ageing. 2020; 49 (5): 696–700. DOI: 10.1093/ageing/afaa118.
32. Bettger J.P., Thoumi A., Marguevich W. et al. COVID-19: maintain essential rehabilitation services across the care continuum. BMJ Glob. Heath. 2020; 5 (5): e002670. DOI: 10.1136/bmjgh-2020-002670.
33. Carda S., Invernizzi M., Bavikatte G. The role of physical and rehabilitation medicine in the COVID-19 pandemic: The clinician’s view. Ann. Phys. Rehabil. Med. 2020; 99 (6): 459–463. DOI: 10.1097/phm.0000000000001452.
Review
For citations:
Meshcheryakova N.N., Belevskiy A.S., Kuleshov A.V. Pulmonary rehabilitation of patients with coronavirus infection COVID-19, clinical examples. PULMONOLOGIYA. 2020;30(5):715-722. https://doi.org/10.18093/0869-0189-2020-30-5-715-722