1. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395 (10224): 565-574. https://doi.org/10.1016/s0140-6736(20)30251-8.
2. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/?gclid=CjwKCAjwi_b3BRAGEiwAemPNU7B2JwU49WIXL-2GzfGG0bPVQqtXIIwdpVJKQ90n84M2W_m2a4dDyRoCMMsQAvD_BwE [Accessed: July 2, 2020].
3. Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020; 220: 1-13. https://doi.org/10.1016/j.trsl.2020.04.007.
4. Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. https://doi.org/10.1016/j.ebiom.2020.102763.
5. Li H., Liu L., Zhang D. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395 (10235): 1517-1520. https://doi.org/10.1016/s0140-6736(20)30920-x.
6. Mauad T., Hajjar L.A., Callegari G.D. et al. Lung pathology in fatal novel human influenza A (H1n1) infection. Am. J. Respir. Crit. Care Med. 2010; 181 (1): 72-79. https://doi.org/10.1164/rccm.200909-1420oc.
7. Duarte-Neto A.N., Monteiro R.A.A., Silva L.F.F et al. Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology. 2020; 77 (2): 186-197. https://doi.org/10.1111/his.14160.
8. Gralinski L.E., Bankhead A. 3rd , Jeng S. et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013; 4 (4): e00271-13. https://doi.org/10.1128/mbio.00271-13.
9. Li K., Wohlford-Lenane C., Perlman S. et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis. 2016; 213 (5): 712-722. https://doi.org/10.1093/infdis/jiv499.
10. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054-1062. https://doi.org/10.1016/S01406736(20)30566-3.
11. Carsana L., Sonzogni A., Nasr A. et al. Pulmonary postmortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. [Preprint. Posted: 2020, Jun. 08]. https://doi.org/10.1016/s14733099(20)30434-5.
12. Черняев А.Л., Зайратьянц О.В., Келли Е.И. и др. Патологическая анатомия гриппа A/H1N1. Архив патологии. 2010; 72 (3): 3-6.
13. Zhang H., Zhou P., Wei Y. et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 2020; 72 (9): 629-632. https://doi.org/10.7326/M20-0533.
14. Luo W., Yu H., Gou J. et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints [Preprint. Posted: 2020, Mar. 9]. Available at: https://www.researchgate.net/profile/Weiren_Luo/publication/339939319_Clinical_Pathology_of_Critical_Patient_with_Novel_Coronavirus_Pneumonia_COVID-19_Pulmonary_Fibrosis_and_Vascular_Changes_including_Microthrombosis_Formation/links/5e888de14585150839befe5d/Clinical-Pathology-of-Critical-Patient-with-Novel-Coronavirus-Pneumonia-COVID-19-Pulmonary-Fibrosis-and-Vascular-Changes-including-Microthrombosis-Formation.pdf
15. Schaller T., Hirschbühl K., Burkhardt K. et al. Postmortem examination of patients with COVID-19. Research letter. JAMA. 2020; 323 (24): 2518. https://doi.org/10.1001/jama.2020.8907.
16. Lin L., Lu L., Cao W. et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection - a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020; 9 (1): 727-732. https://doi.org/10.1080/22221751.2020.1746199.
17. McGonagle D., O’Donnell J., Sharif K. et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020; 2 (7): e437-445. https://doi.org/10.1016/S2665-9913(20)30121-1.
18. Bryce C., Grimes Z., Pujadas E. et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv [Preprint. Posted: 2020, May 22]. https://doi.org/10.1101/2020.05.18.20099960.
19. Wichmann D., Sperhake J.-P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19. A prospective cohort study. Ann. Intern. Med. 2020; 173 (4): 268-277. https://doi.org/10.7326/M20-2003.
20. Edler C., Schröder A.S., Aepfelbacher M. et al. Dying with SARS-CoV-2 infection - an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Legal Med. 2020; 134 (4): 1275-1284. https://doi.org/10.1007/s00414-02002317-w.
21. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120-128. https://doi.org/10.1056/NEJMoa2015432.
22. Li G., Fox S.E., Summa B. et al. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy. bioRxiv [Preprint. Posted: 2020, Apr. 20]. https://doi.org/10.1101/2020.04.11.037473.
23. Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094-1099. https://doi.org/10.1111/jth.14817.
24. Oudkerk M., Büller H.R., Kuijpers D. et al. Diagnosis, prevention, and treatment of thromboembolic complications in Covid-19: report of the national institute for public health of the Netherlands. Radiology. 2020; 297 (1): e216-222. https://doi.org/10.1148/radiol.2020201629.
25. Giannis D., Ziogas I.A., Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020; 127: 104362. https://doi.org/10.1016/j.jcv.2020.104362.
26. Li H., Liu L., Zhang D. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395 (10235): 1517-1520. https://doi.org/10.1016/S0140-6736(20)30920-X.
27. Kluge S., Janssens U., Welte T. et al. German recommendations for critically ill patients with COVID-19. Medi. Klin. Intensiv. Notfmed. [Preprint. Posted: 2020, Apr. 14]. https://doi.org/10.1007/s00063-020-00689-w.
28. Colantuoni A., Martini R., Caprari P. et al. COVID-19 sepsisand microcirculation dysfunction. Front. Physiol. 2020; 11: 747. https://doi.org/10.3389/fphys.2020.00747.
29. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5.
30. Menter T., Haslbauer J.D., Nienhold R. et al. Post-mortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020; 77 (2): 198-209. https://doi.org/10.1111/HIS.14134.
31. Suess C., Hausmann R. Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. Int. J. Legal Med. 2020; 134 (4): 1285-1290. https://doi.org/10.1007/s00414-020-02319-8.
32. Кунгурова В.В., Хасанянова С.В. К вопросу о мегакариоцитозе в сосудах микроциркуляции при различных видах наступления смерти (по данным судебно-гистологических исследований). Проблемы экспертизы в медицине. 2015; 15 (1-2): 15-17.
33. Белянин В.Л., Рыбакова М.Г. Сепсис. Патологическая анатомия. СПб: ГУЗ ГПАБ; 2004.
34. Boilard E., Flamand L. The role of the megakaryocyte in immunity has gone viral. Blood. 2019; 133 (19): 2001-2002. https://doi.org/10.1182/blood-2019-02-900787.
35. Забозлаев Ф.Г., Кравченко Э.В., Галлямова А.Р. и др. Патологическая анатомия легких при новой коронавирусной инфекции (COVID-19). Предварительный анализ аутопсийных исследований. Клиническая практика. 2020; 11 (2): 60-76. https://doi.org/10.17816/clinpract34849.
36. Teoh K.T., Siu Y.L., Chan W.L. et al. The SARS coronavirus E protein interacts with Pals1 and alters tight junction formation and epithelial morphogenesis. Mol. Biol. Cell., 2010; 21 (22): 3838-3852. https://doi.org/10.1091/mbc.e10-04-0338.
37. Chan E.D., Morales D.V., Welsh C.H. et al. Calcium deposition with or without bone formation in the lung. Am. J. Respir. Crit. Care Med. 2002; 165 (12): 1654-1669. https://doi.org/10.1164/rccm.2108054.
38. Зайратьянц О. В., Cамсонова М. В., Михалева Л. М. и др. Патологическая анатомия COVID-19: Атлас. М.: ГБУ «НИИОЗММ ДЗМ»; 2020.