Inhalation antibacterial drugs: current opportunities for use in respiratory infections
https://doi.org/10.18093/0869-0189-2020-30-3-320-328
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
The need to find ways to improve the effectiveness of antibacterial therapy is due to the dramatic escalation of resistance to antibacterial drugs (ABD), with the growth rate of resistance of ABD microorganisms ahead of the new drugs development. According to available data, the pathway of ABD administration may correlate with the phenomenon of resistance development to ABD. Actual data on existing inhalation ABDs, allowing to estimate their efficiency and safety, are considered in the article. In the treatment of patients with infectious respiratory diseases, an alternative to the systemic use of ABD may be inhalation administration of a number of ABDs, whose activity depends on concentration.
About the Authors
S. K. ZyryanovRussian Federation
Sergey K. Zyryanov - Doctor of Medicine, Professor, Head of Department of General and Clinical Pharmacology, PFUR, Deputy Chief Physician, MSCCHNo.24, Moscow City Department of Health Care.
Ul. Miklukho-Maklaya 6, Moscow, 117198; Ul. Pistsovaya 10, Moscow, 127015, tel.: (495) 787-38-03
Competing Interests: not
O. I. Butranova
Russian Federation
Olga I. Butranova - Candidate of Medicine, Assistant Professor, Chair of General and Clinical Pharmacology.
Ul. Miklukho-Maklaya 6, Moscow, 117198; tel.: (903) 376-71-40Competing Interests: not
References
1. Zimlichman E., Henderson D., Tamir O. et al. Health care-associated infections. a meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 2013; 173 (22): 2039-2046. https://doi.org/10.1001/jamainternmed.2013.9763.
2. Spellberg B., Blaser M., Guidos R.J. et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 2011; 52 (Suppl. 5): S397-428. https://doi.org/10.1093/cid/cir153.
3. Aslam B., Wang W., Arshad M.I. et al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 2018; 11: 1645-1658. https://doi.org/10.2147/IDR.S173867.
4. Singer A.C., Shaw H., Rhodes V., Hart A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. 2016; 7: 1728. https://doi.org/10.3389/fmicb.2016.01728.
5. Castro-Sánchez E., Moore L.S.P., Husson F., Holmes A.H. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect. Dis. 2016; 16: 465. https://doi.org/10.1186/s12879-016-1810-x.
6. Chokshi A., Sifri Z., Cennimo D., Horng H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019; 11 (1): 36-42. https://doi.org/10.4103/jgid.jgid_110_18.
7. Li J., Xie S., Ahmed S. et al. Antimicrobial activity and resistance: influencing factors. Front. Pharmacol. 2017; 8: 364. https://doi.org/10.3389/fphar.2017.00364.
8. Allcock S., Young E.H., Holmes M. et al. Antimicrobial resistance in human populations: challenges and opportunities. Glob. Health Epidemiol. Genom. 2017; 2: e4. https://doi.org/10.1017/gheg.2017.4.
9. Langdon A., Crook N., Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8: 39. https://doi.org/10.1186/s13073-016-0294-z.
10. Becattini S., Taur Y., Pamer E.G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 2016; 22 (6): 458-478. https://doi.org/10.1016/j.molmed.2016.04.003.
11. Teo S.M., Mok D., Pham K. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015; 17 (5): 704-715. https://doi.org/10.1016/j.chom.2015.03.008.
12. Cuthbertson L., Rogers G.B., Walker A.W. et al. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME J. 2016; 10: 1081-1091. https://doi.org/10.1038/ismej.2015.198.
13. Deshmukh H.S., Liu Y., Menkiti O.R. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014; 20: 524-530. https://doi.org/10.1038/nm.3542.
14. Ichinohe T., Pang I.K., Kumamoto Y. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA. 2011; 108 (13): 5354-5359. https://doi.org/10.1073/pnas.1019378108.
15. Clarke T.B. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect. Immun. 2014; 82 (11): 4596-4606. https://doi.org/10.1128/IAI.02212-14.
16. Khosravi A., Yanez A., Price J. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014; 15 (3): 374-381. https://doi.org/10.1016/j.chom.2014.02.006.
17. Gauguet S., D'Ortona S., Ahnger-Pier K. et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun. 2015; 83 (10): 4003-4014. https://doi.org/10.1128/IAI.00037-15.
18. Schuijt T.J., Lankelma J.M., Scicluna B.P. et al. The gut microbiota plays a protective role in the host defense against pneumococcal pneumonia. Gut. 2016; 65 (4): 575-583. https://doi.org/10.1136/gutjnl-2015-309728.
19. Brown R.L., Sequeira R.P., Clarke T.B. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 2017; 8: 1512. https://doi.org/10.1038/s41467-017-01803-x.
20. Zhang L., Huang Y., Zhou Y. et al. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 2013; 57 (8): 3659-3666. https://doi.org/10.1128/AAC.00670-13.
21. Wenzler E., Fraidenburg D.R., Scardina T., Danziger L.H. Inhaled antibiotics for gram-negative respiratory infections. Clin. Microbiol. Rev. 2016; 29 (3): 581-632. https://doi.org/10.1128/CMR.00101-15.
22. Rodvold K.A., George J.M., Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin. Pharmacokinet. 2011; 50 (10): 637-664. https://doi.org/10.2165/11594090-000000000-00000.
23. Sylvester J.T., Shimoda L.A., Aaronson P.I., Ward J.P.T. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 2012; 92 (1): 367-520. https://doi.org/10.1152/physrev.00041.2010.
24. McWilliam S.J., Antoine D.J., Smyth R.L., Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr. Nephrol. 2017; 32: 2015-2025. https://doi.org/10.1007/s00467-016-3533-z.
25. Heta S., Robo I. The side effects of the most commonly used group of antibiotics in periodontal treatments. Med. Sci. (Basel). 2018; 6 (1): 6. https://doi.org/10.3390/medsci6010006.
26. Ma T.K.W., Chow K.M., Choy A.S.M. et al. Clinical manifestation of macrolide antibiotic toxicity in CKD and dialysis patients. Clin. Kidney. J. 2014; 7 (6): 507-512. https://doi.org/10.1093/ckj/sfu098.
27. Francis J.K., Higgins E. Permanent peripheral neuropathy: a case report on a rare but serious debilitating side-effect of fluoroquinolone administration. J. Investig. Med. High Impact Case Rep. 2014; 2 (3): 2324709614545225. https://doi.org/10.1177/2324709614545225.
28. Michalak K., Sobolewska-Włodarczyk A., Włodarczyk M. et al. Treatment of the fluoroquinolone-associated disability: the pathobiochemical implications. Oxid. Med. Cell. Longev. 2017; 2017: 8023935. https://doi.org/10.1155/2017/8023935.
29. Telfer S.J. Fluoroquinolone antibiotics and type 2 diabetes mellitus. Med. Hypotheses. 2014; 83 (3): 263-269. https://doi.org/10.1016/j.mehy.2014.05.013.
30. Wiest D.B., Cochran J.B., Tecklenburg F.W. Chloramphenicol toxicity revisited: a 12-year-old patient with a brain abscess. J. Pediatr. Pharmacol. Ther. 2012; 17 (2): 182-188. https://doi.org/10.5863/1551-6776-17.2.182.
31. Dhand R. The rationale and evidence for use of inhaled antibiotics to control Pseudomonas aeruginosa infection in non-cystic fibrosis bronchiectasis. J. Aerosol. Med. Pulm. Drug Deliv. 2018; 31 (3): 121-138. https://doi.org/10.1089/jamp.2017.1415.
32. Carcas A.J., Garcia-Satue J.L., Zapater P., Frias-Iniesta J. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin. Pharmacol. Ther. 1999; 65 (3): 245-250. https://doi.org/10.1016/S0009-9236(99)70103-7.
33. Lu Q., Girardi C., Zhang M. et al. Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intens. Care Med. 2010; 36: 1147-1155. https://doi.org/10.1007/s00134-010-1879-4.
34. Elborn J.S., Flume P.A., Cohen F. et al. Safety and efficacy of prolonged levofloxacin inhalation solution (APT-1026) treatment for cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. J. Cyst. Fibros. 2016; 15 (5): 634-640. https://doi.org/10.1016/j.jcf.2016.01.005.
35. Elborn J.S., Geller D.E., Conrad D. et al. A phase 3, open-label, randomized trial to evaluate the safety and efficacy of levofloxacin inhalation solution (APT-1026) versus tobramycin inhalation solution in stable cystic fibrosis patients. J. Cyst. Fibros. 2015; 14 (4): 507-514. https://doi.org/10.1016/j.jcf.2014.12.013.
36. Cipolla D., Blanchard J., Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016; 8 (1): 6. https://doi.org/10.3390/pharmaceutics8010006.
37. Wilson R., Welte T., Polverino E. et al. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: a phase II randomised study. Eur. Respir. J. 2013; 41 (5): 1107-1115. https://doi.org/10.1183/09031936.00071312.
38. De Soyza A., Aksamit T., Bandel T.J. et al. Efficacy and tolerability of ciprofloxacin dry powder for inhalation (ciprofloxacin DPI) in bronchiectasis (non-CF etiology): results from the phase III RESPIRE 1 study. Chest. 2016; 150 (4, Suppl.): 1315A. https://doi.org/10.1016/j.chest.2016.08.1446.
39. Haworth C.S., Bilton D., Chalmers J.D. et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir. Med. 2019; 7 (3): 213-226. https://doi.org/10.1016/S2213-2600(18)30427-2.
40. Hansen C., Skov M. Evidence for the efficacy of aztreonam for inhalation solution in the management of Pseudomonas aeruginosa in patients with cystic fibrosis. Ther. Adv. Respir. Dis. 2015; 9 (1): 16-21. https://doi.org/10.1177/1753465814561624.
41. Barker A.F., O'Donnell A.E., Flume P. et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir. Med. 2014; 2 (9): 738-749. https://doi.org/10.1016/S2213-2600(14)70165-1.
42. Murray M.P., Govan J.R.W., Doherty C.J. et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 2011; 183 (4): 491-499. https://doi.org/10.1164/rccm.201005-0756OC.
43. Niederman M.S., Chastre J., Corkery K. et al. BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med. 2012; 38: 263-271. https://doi.org/10.1007/s00134-011-2420-0.
44. Barker A.F., Couch L., Fiel S.B. et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am. J. Respir. Crit. Care Med. 2000; 162 (2, Pt 1): 481-485. https://doi.org/10.1164/ajrccm.162.2.9910086.
45. Drobnic M.E., Suñé P., Montoro J.B. et al Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann. Pharmacother. 2005; 39 (1): 39-44. https://doi.org/10.1345/aph.1E099.
46. Vendrell M., Muñoz G., de Gracia J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir. Med. J. 2015; 9: 30-36. https://doi.org/10.2174/1874306401509010030.
47. Schuster A., Haliburn C., Döring G. et al. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax. 2013; 68 (4): 344-350. https://doi.org/10.1136/thoraxjnl-2012-202059.
48. Abdellatif S., Trifi A., Daly F. et al. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann. Intens. Care. 2016; 6: 26. https://doi.org/10.1186/s13613-016-0127-7.
49. Kim Y.K., Lee J.H., Lee H.K. et al. Efficacy of nebulized colistin-based therapy without concurrent intravenous colistin for ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii. J. Thorac. Dis. 2017; 9 (3): 555-567. https://doi.org/10.21037/jtd.2017.02.61.
50. Yang J.W., Fan L.C., Lu H.W. et al. Efficacy and safety of long-term inhaled antibiotic for patients with noncystic fibrosis bronchiectasis: a meta-analysis. Clin. Respir. J. 2016; 10 (6): 731-739. https://doi.org/10.1111/crj.12278.
51. Laska I.F., Crichton M.L., Shoemark A., Chalmers J.D. The efficacy and safety of inhaled antibiotics for the treatment of bronchiectasis in adults: a systematic review and meta-analysis. Lancet Respir. Med. 2019; 7 (10): 855-869. https://doi.org/10.1016/S2213-2600(19)30185-7.
52. Marchese A., Debbia E.A., Tonoli E. et al. In vitro activity of thiamphenicol against multiresistant Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in Italy. J. Chemotherapy. 2002; 14 (6): 554-561. https://doi.org/10.1179/joc.2002.14.6.554.
53. Nurbaeti S.N., Olivier J.C., Adier C. et al. Active mediated transport of chloramphenicol and thiamphenicol in a Calu-3 lung epithelial cell model. J. Pharm. Sci. 2018; 107 (4): 1178-1184. https://doi.org/10.1016/j.xphs.2017.11.021.
54. Blasi F., Page C., Rossolini G.M. et al. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir. Med. 2016; 117:190-197. https://doi.org/10.1016/j.rmed.2016.06.015.
55. Foreman A., Psaltis A.J., Tan L.W. et al. Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am. J. Rhinol. Allergy. 2009; 23 (6): 556-561. https://doi.org/10.2500/ajra.2009.23.3413.
56. Serra A., Schito G.C., Nicoletti G. et al. A therapeutic approach in the treatment of infections of the upper airways: thiamphenicol glycinate acetylcysteinate in sequential treatment (systemic-inhalatory route). Int. J. Immunopathol. Pharmacol. 2007; 20 (3): 607-617. https://doi.org/10.1177/039463200702000319.
57. Macchi A., Ardito F., Marchese A. Efficacy of N-acetyl-cysteine in combination with thiamphenicol in sequential (intramuscular/aerosol) therapy of upper respiratory tract infections even when sustained by bacterial biofilms. J. Chemother. 2006; 18 (5): 507-513. https://doi.org/10.1179/joc.2006.18.5.507.
58. Macchi A., Castelnuovo P. Aerosol antibiotic therapy in children with chronic upper airway infections: a potential alternative to surgery. Int. J. Immunopathol. Pharmacol. 2009; 22 (2): 303-310. https://doi.org/10.1177/039463200902200207.
59. Mogayzel P.J. Jr, Naureckas E.T., Robinson K.A. et al. Cystic Fibrosis Foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann. Am. Thorac. Soc. 2014; 11 (10): 1640-1650. https://doi.org/10.1513/AnnalsATS.201404-166OC.
60. Polverino E., Goeminne P.C., McDonnell M.J. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017; 50 (3): 1700629. https://doi.org/10.1183/13993003.00629-2017.
61. Feeley T.W., Du Moulin G.C., Hedley-Whyte J. et al. Aerosol polymyxin and pneumonia in seriously ill patients. N. Engl. J. Med. 1975; 293: 471-475. https://doi.org/10.1056/NEJM197509042931003.
Review
For citations:
Zyryanov S.K., Butranova O.I. Inhalation antibacterial drugs: current opportunities for use in respiratory infections. PULMONOLOGIYA. 2020;30(3):320-328. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-3-320-328
ISSN 2541-9617 (Online)