Dornase alfa in the treatment of COVID-19: destruction of neutrophil extracellular traps
https://doi.org/10.18093/0869-0189-2020-30-3-344-349
Abstract
In the severe or fatal course of COVID-19, rapid virus replication gives rise to exuberant inflammatory response including cytokine storm, characterized by elevated plasma concentrations of proinflammatory cytokines that support neutrophil activity and stimulate endothelial cells. Рost mortem examinations confirm these data, indicating extensive neutrophil infiltration and accumulation of neutrophil extracellular traps (NET)s in lung tissues of patients who have died from COVID-19. In this paper the possibility of therapy with dornase-alfa in COVID-19 patients is discussed. Designed to treat cystic fibrosis lung disease, this drug can reduce neutrophil activity, slow down the NET release and accelerate the NET clearance in the airways of COVID-19 patients. The authors also present the protocol of COVID-19 therapy with dornase-alfa produced by Russian manufacturer.
About the Authors
E. L. AmelinaRussian Federation
Elena L. Amelina - Candidate of Medicine, head of the cystic fibrosis laboratory.
Orekhovyy bul'var 28, Moscow, 115682; tel.: 8(926) 205-03-91
Competing Interests: not
N. Yu. Kashirskaya
Russian Federation
Nataliya Yu. Kashirskaya - Doctor of Medicine, Professor, Principal Researcher at Laboratory of Genetic Epidemiology.
Ul. Moskvorech'e 1, Moscow, 1115478; tel.: (910) 440-05-63
Competing Interests: not
G. V. Shmarina
Galina V. Shmarina, Candidate of Medicine, Leading Researcher, Laboratory of Molecular Biology
Ul. Moskvorech'e 1, Moscow, 1115478; tel.: (915) 450-95-86
Competing Interests: not
S. A. Krasovskiy
Russian Federation
Stanislav A. Krasovskiy, Candidate of Medicine, Senior scientist of the Cystic fibrosis Laboratory.
Orekhovyy bul'var 28, Moscow, 115682; tel.: (926) 273-76-34
Competing Interests: not
D. A. Kudlay
Russian Federation
Dmitry A. Kudlay, Doctor of Medicine, Professor, General Director.
Ul. Zavodskaya, build. 273, Vol'ginsky, Vladimir Region, 601125; tel.: (495) 988-47-94
Competing Interests: not
O. A. Markova
GENERIUM Joint-Stock Company
Russian Federation
Oksana A. Markova, Head of the Scientific division of Department of clinical research.
Ul. Zavodskaya, build. 273, Vol'ginsky, Vladimir Region, 601125; tel.: (495) 988-47-94
Competing Interests: not
S. N. Avdeev
Russian Federation
Sergey N. Avdeev, Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Pulmonology Department, I.M.Sechenov FMSMU; Head of Clinical Division, Federal Pulmonology Research Institute, FMBAR.
Orekhovyy bul'var 28, Moscow, 115682; Ul. Trubetskaya 8, build. 2, Moscow, 119991; tel.: (495) 395-63-93
Competing Interests: not
References
1. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513. DOI: 10.1016/S0140-6736(20)30211-7.
2. Gritsan A.I., Yaroshetskiy A.I., Vlasenko A.V. et al. [Diagnosis and intensive care of acute respiratory distress syndrome. Clinical recommendations of the PAR]. Anesteziologiya i reanimatologiya. 2016; 61 (1): 62–70 (in Russian).
3. Potey P.M., Rossi A.G., Lucas C.D., Dorward D.A. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J. Pathol. 2019; 247 (5): 672–685. DOI: 10.1002/path.5221.
4. Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013; 13 (3): 159–175. DOI: 10.1038/nri3399.
5. McDonald B., Urrutia R., Yipp B.G. et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012; 12 (3): 324–333. DOI: 10.1016/j.chom.2012.06.011.
6. Schönrich G., Raftery M.J. Neutrophil extracellular traps go viral. Front. Immunol. 2016; 7: 366. DOI: 10.3389/fimmu.2016.00366.
7. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323 (11):1061–1069. 2020. DOI: 10.1001/jama.2020.1585.
8. Liu J., Liu Y., Xiang P. et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. MedRxiv. 2020.02.10.20021584. DOI: 10.1101/2020.02.10.20021584.
9. Bergeron C., Cantin A.M. Cystic fibrosis: Pathophysiology of lung disease. Semin. Respir. Crit. Care Med. 2019; 40 (6): 715–726. DOI: 10.1055/s-0039-1694021.
10. Khan M.A., Ali Z.S., Sweezey N. et al. Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) formation, and NET degradation. Genes (Basel). 2019; 10 (3): 183. DOI: 10.3390/genes10030183.
11. Lachowicz-Scroggins M.E., Dunican E.M., Charbit A.R. et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am. J. Respir. Crit. Care Med. 2019; 199 (9): 1076–1085. DOI: 10.1164/rccm.201810-1869OC.
12. Earhart A.P., Holliday Z.M., Hofmann H.V., Schrum A.G. Consideration of dornase alfa for the treatment of severe COVID-19 acute respiratory distress syndrome. New Microbes New Infect. 2020; 35: 100689. DOI: 10.1016/j.nmni.2020.100689.
13. Henry B.M., Vikse J., Benoit S. et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020; 507: 167–173. DOI: 10.1016/j.cca.2020.04.027.
14. de Bont C.M., Boelens W.C., Pruijn G.J.M. NETosis, complement, and coagulation: a triangular relationship. Cell. Mol. Immunol. 2019; 16 (1): 19–27. DOI: 10.1038/s41423-018-0024-0.
15. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5 (11): е138999. DOI: 10.1172/jci.insight.138999.
16. Llitjos J.F., Leclerc M., Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 2020; 18 (7): 1743–1746. DOI: 10.1111/jth.14869.
17. Lefrançais E., Mallavia B., Zhuo H. et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018; 3 (3): e98178. DOI: 10.1172/jci.insight.98178.
18. Zou Y., Chen X., Xiao J. et al. Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget. 2018; 9: 13276–13286. DOI: 10.18632/oncotarget.24022.
19. Yang C., Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst. Rev. 2018; 9 (9): CD001127.
20. Morris C., Mullan B. Use of dornase alfa in the management of ARDS. Anaesthesia. 2004; 59 (12): 1249. DOI: 10.1111/j.1365-2044.2004.04018.x.
21. Riethmueller J., Borth-Bruhns T., Kumpf M. et al. Recombinant human deoxyribonuclease shortens ventilation time in young, mechanically ventilated children. Pediatr. Pulmonol. 2006; 41: 61–66.
22. Pottecher J., Noll E., Borel M. et al. Protocol for Traumadornase: a prospective, randomized, multicentre, double-blinded, placebo-controlled clinical trial of aerosolized dornase alfa to reduce the incidence of moderate-to-severe hypoxaemia in ventilated trauma patients. Trials. 2020; 21: 274. DOI: 10.1186/s13063-020-4141-6.
23. Amelina E.L., Krasovskiy S.A., Abdulganieva D.I. et al. [Efficacy and safety of the biosimilar medicinal product Tigerase® (dornase alfa) in long-term symptomatic treatment of patients with cystic fibrosis: results of a phase III clinical trial]. Pul'monologiya. 2019; 29 (6): 695–706. DOI: 10.18093/0869-0189-2019-29-6-695-706 (in Russian).
Review
For citations:
Amelina E.L., Kashirskaya N.Yu., Shmarina G.V., Krasovskiy S.A., Kudlay D.A., Markova O.A., Avdeev S.N. Dornase alfa in the treatment of COVID-19: destruction of neutrophil extracellular traps. PULMONOLOGIYA. 2020;30(3):344-349. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-3-344-349