Preview

PULMONOLOGIYA

Advanced search

Practical guidance for oxygen treatment and respiratory support of patients with COVID-19 infection before admission to intensive care unit

https://doi.org/10.18093/0869-0189-2020-30-2-151-163

Abstract

Acute Respiratory failure (ARF) is the leading cause of death in patients with severe COVID-19, who have been admitted to the hospital. Tradition - ally, it has been believed that with severe pneumonia complicated by ARF, survival can improve with the use of early intubation and artificial lung ventilation (ALV) in patients. However, according to recently published studies, COVID-19 has a very high death rate among patients receiving ALV. In case of early (pre-life support) start of oxygen therapy and respiratory support in patients with COVID-19 the need for transfer to the intensive care unit, tracheal intubation and ALV decreases, and therefore the prognosis improves. This article presents practical guidelines for oxygen therapy and respiratory support at the pre-life support in patients with COVID-19 infection complicated by ARF. 

About the Authors

S. N. Avdeev
I.M.Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

Doctor of Medicine, Professor, Corresponding Member of Russian Academy of Sciences, Head of Department of Pulmonology, ul. Trubetskaya 8, build. 2, Moscow, 119991;

Deputy Director for Science, Orekhovyy bul'var 28, Moscow, 115682



N. N. Tsareva
I.M.Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

Candidate of Medicine, Assistant Lecturer, Pulmonology Department, ul. Trubetskaya 8, build. 2, Moscow, 119991;

Head оf Laboratory, Orekhovyy bul'var 28, Moscow, 115682



Z. M. Merzhoeva
I.M.Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

Candidate of Medicine, Assistant Lecturer, Pulmonology Department, ul. Trubetskaya 8, build. 2, Moscow, 119991;

Researcher, Orekhovyy bul'var 28, Moscow, 115682



N. V. Trushenko
I.M.Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
Russian Federation

Candidate of Medicine; Assistant Lecturer, Department of Pulmonology, ul. Trubetskaya 8, build. 2, Moscow, 119991;

Researcher, Scientific and Methodological Center for Monitoring and Control of Respiratory Diseases, Orekhovyy bul'var 28, Moscow, 115682



A. I. Yaroshetskiy
I.M.Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia; N.I.Pirogov Federal Russian National Research Medical University, Healthcare Ministry of Russia
Russian Federation

Doctor of Medicine, Professor, Department of Pulmonology, ul. Trubetskaya 8, build. 2, Moscow, 119991;

Head of Department of Anesthesiology and Intensive Care, Research Institute of Clinical Surgery, ul. Ostrovityanova 1, Moscow, 117997



References

1. World Health Organization. Global surveillance for human infection with coronavirus disease (COVID-2019). 2020. Available at: https://www.who.int/publications-detail/globalsurveillance-for-human-infection-with-novel-coronavirus-(2019-ncov) [Accessed: May 17, 2020].

2. Spina S., Marrazzo F., Migliari M. et al. The response of Milan’s Emergency Medical System to the COVID-19 outbreak in Italy. Lancet. 2020; 395 (10227): Е49–50. DOI: 10.1016/S0140-6736(20)30493-1.

3. Glybochko P.V., Fomin V.V., Avdeev S.N. et al. [Clinical characteristics of 1007 patients with severe SARS-CoV-2 pneumonia who needed respiratory support]. Klinicheskaya farmakologiya i terapiya. 2020; 29 (2): 21–29 (in Russian).

4. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846–848. DOI: 10.1007/s00134-020-05991-x.

5. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052–2059. DOI: 10.1001/jama.2020.6775.

6. Zhu N., Zhang D., Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382: 727–733. DOI: 10.1056/NEJMoa2001017.

7. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5.

8. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI: 10.1001/jama.2020.2648.

9. Xie J., Covassin N., Fan Z. et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin. Proc. 2020; 95 (6): 1138–1147. DOI: 10.1016/j.mayocp.2020.04.006.

10. Bellani G., Laffey J.G., Pham T. et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am. J. Respir. Crit. Care Med. 2017; 195 (1): 67–77. DOI: 10.1164/rccm.201606-1306OC.

11. ICNARC. ICNARC report on COVID-19 in critical care. 10 April 2020.

12. Vitacca M., Nava S., Santus P., Harari S. Early consensus management for non-ICU acute respiratory failure SARSCoV-2 emergency in Italy: from ward to trenches. Eur. Respir. J. 2020; 55 (5): 2000632. DOI: 10.1183/13993003.00632-2020.

13. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382: 1708–1720. DOI: 10.1056/NEJMoa2002032.

14. Siemieniuk R.A.C., Cu D.K., Kim L.H. et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. Br. Med. J. 2018; 363: k4169. DOI: 10.1136/bmj.k4169.

15. Avdeev S.N., Aisanov Z.R., Chuchalin A.G. Compliance as a critical issue in long-term oxygen therapy. Monaldi. Arch. Chest Dis. 1999; 54 (1): 61–66.

16. Avdeev S.N. [Urgent oxygen therapy]. Vestnik anesteziologii i reanimatologii 2011; 8 (3): 42–51 (in Russian).

17. Avdeev S.N. [Current guidelines for emergency oxygen therapy]. Terapevticheskiy arkhiv. 2012; 84 (12): 108–114 (in Russian).

18. Anthonisen N.R. Hypoxemia and O2 therapy. Am. Rev. Respir. Dis. 1982; 126 (4): 729–733.

19. O′Driscoll B.R., Howard L.S., Earis J. et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017; 72 (Suppl. 1): ii1–90. DOI: 10.1136/thoraxjnl-2016-209729.

20. Alhazzani W., Møller M.H., Arabi Y.M. et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit. Care Med. 2020; 48 (6): e440–469. DOI: 10.1097/CCM.0000000000004363.

21. Berlin D.A., Gulick R.M., Martinez F.J. Severe Covid-19. N. Engl. J. Med. 2020; May 15. DOI: 10.1056/NEJMcp2009575.

22. Schacter E.N., Littner M.R., Luddy P., Beck G.J. Monitoring of oxygen delivery systems in clinical practice. Crit. Care Med. 1980; 8 (7): 405–409. DOI: 10.1097/00003246-198007000-00010.

23. Becker H.F., Polo O., McNamara S.G. et al. Effect of different levels of hyperoxia on breathing in healthy subjects. J. Appl. Physiol. 1996; 81 (4): 1683–1690. DOI: 10.1152/jappl.1996.81.4.1683.

24. Gibson R.L., Comer P.B., Beckham R.W., McGraw C.P. Actual transtracheal oxygen concentrations with commonly used oxygen equipment. Anesthesiology. 1976; 44 (1): 71–73. DOI: 10.1097/00000542-197601000-00019.

25. Cooper N. Acute medicine: Treatment with oxygen. Student Br. Med. J. 2004; 12: 56–58.

26. O'Connor M., Hall J.B., Schmidt G.A. et al. Acute hypo - xemic respiratory failure. In: Hall J.B., Schmidt G.A., Wood L.D.H., eds. Principles of Critical Care. New York: McGraw-Hill Publishers; 1998: 537–559.

27. Hare A. High-flow nasal cannula therapy in adults. Clin. Pulm. Med. 2017; 24: 95–104.

28. Mauri T., Turrini C., Eronia N. et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am. J. Respir. Crit. Care Med. 2017; 195: 1207–1215.

29. Nishimura M. High-flow nasal cannula oxygen therapy in adults. J. Intensive Care. 2015; 3 (1): 15. DOI: 10.1186/s40560-015-0084-5.

30. Helviz Y., Einav S. A systematic review of the high-flow nasal cannula for adult patients. Crit. Care. 2018; 22 (1): 71. DOI: 10.1186/s13054-018-1990-4.

31. Ou X., Hua Y., Liu J. et al. Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials. Can. Med. Assoc. J. 2017; 189 (7): E260–267. DOI: 10.1503/cmaj.160570.

32. Lambertsen C.J., Stroud M.W. III, Gould R.A. et al. Oxygen toxicity: respiratory responses of normal men to inhalation of 6 and 100 per cent oxygen under 3.5 atmospheres pressure. J. Appl. Physiol. 1953; 5 (9): 487–493. DOI: 10.1152/jappl.1953.5.9.487.

33. Lane R., Cockcroft A., Adams L., Guz A. Arterial oxygen saturation and breathlessness in patients with chronic obstructive airways disease. Clin. Sci. (Lond.) 1987; 72: 693–698.

34. Rochwerg B., Brochard L., Elliott M.W. et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017; 50 (2): 1602426. DOI: 10.1183/13993003.02426-2016.

35. Avdeev S.N. [Noninvasive ventilation in acute respiratory failure: from clinical guidelines to the real clinical practice. Commentary on Clinical guidelines on use of noninvasive ventilation in patients with acute respiratory failure]. Pul'monologiya. 2018; 28 (1): 32–35. DOI: 10.18093/0869-0189-2018-28-1-32-35 (in Russian).

36. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected: interim guidance, 25 January 2020. Available at: https://apps.who.int/iris/handle/10665/330854 [Accessed: May 17, 2020].

37. World Federation of Societies of Anaesthesiologists. Coronavirus – guidance for anaesthesia and perioperative care providers. Available at: https://www.wfsahq.org/resources/coronavirus [Accessed: May 17, 2020].

38. The Faculty of Intensive Care Medicine. Letter regarding the Use of Continuous Positive Airway Pressure (CPAP) for COVID-19 positive patients / The Faculty of Intensive Care Medicine [Internet]. Available at: https://www.ficm.ac.uk/news-events-education/news/letter-regarding-use-continuouspositive-airway-pressure-cpap-covid-19 [Accessed: May 17, 2020].

39. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–1069. DOI: 10.1001/jama.2020.1585.

40. Li H.C., Ma J., Zhang H. et al. [Thoughts and practice on the treatment of severe and critical new coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43 (5): 396–400. DOI: 10.3760/cma.j.cn112147-20200312-00320 (in Chinese).

41. Avdeev S.N. [Non-invasive ventilation in patients with chronic obstructive pulmonary disease in a hospital and at home]. Pul'monologiya. 2017; 27 (2): 232–249. DOI: 10.18093/0869-0189-2017-27-2-232-249 (in Russian).

42. Avdeev S.N. [Non-invasive ventilation in acute respiratory failure]. Pul'monologiya. 2005; (6): 37–54 (in Russian).

43. Branson R.D., Chatburn R.L. Technical description and classification of modes of ventilator operation. Respir. Care. 1992; 37 (9): 1026–1044.

44. Cane R.D., Shapiro B.A. Mechanical ventilatory support. JAMA. 1985; 254 (1): 87–92.

45. Antonelli M., Conti G., Esquinas A. et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit. Care Med. 2007; 35 (1): 18–25.

46. Rana S., Jenad H., Gay P.C. et al. Failure of non-invasive ventilation in patients with acute lung injury: observational cohort study. Crit. Care. 2006; 10 (3): R79. DOI: 10.1186/cc4923.

47. Antonelli M., Conti G., Pelosi P. et al. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet – a pilot controlled trial. Crit. Care Med. 2002; 30 (3): 602–608. DOI: 10.1097/00003246-200203000-00019.

48. Squadrone V., Coha M., Cerutti E. et al. Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA. 2005; 293 (5): 589–595. DOI: 10.1001/jama.293.5.589.

49. Pfeifer M., Ewig S., Voshaar T. et al. Positionspapier zur praktischen Umsetzung der apparativen Differenzial - therapie der akuten respiratorischen Insuffizienz bei COVID-19. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP). Pneumologie. 2020; April 22 (Published online). DOI: 10.1055/a-1157-9976.

50. Ferguson N., Fan E., Camporota L. et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012; 38 (10): 1573–1582. DOI: 10.1007/s00134-012-2682-1.

51. Specialty guides for patient management during the coronavirus pandemic. Guidance for the role and use of non-invasive respiratory support in adult patients with COVID-19 (confirmed or suspected). 6 April 2020, Version 3 (Pub - lications approval reference: 001559). Available at: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/specialty-guide-NIV-respiratory-support-andcoronavirus-v3.pdf [Accessed: May 17, 2020].

52. Lyons C., Callaghan M. The use of high-flow nasal oxygen in COVID-19. Anaesthesia. 2020; 75 (7): 843–847. DOI: 10.1111/anae.15073.

53. ANZICS. The Australian and New Zealand Intensive Care Society COVID-19 Guidelines. Version 1 (16 March 2020). Available at: www.anzics.com.au/wp-content/uploads/2020/03/ANZICS-COVID-19-Guidelines-Version-1.pdf [Accessed: May 25, 2020].

54. Alhazzani W., Møller M.H., Arabi Y.M. et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Available at: www.esicm.org/wp-content/uploads/2020/03/SSC-COVID19-GUIDELINES.pdf [Accessed: May 25, 2020].

55. Ferioli M., Cisternino C., Leo V. et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur. Respir. Rev. 2020; 29 (155): 200068 DOI: 10.1183/16000617.0068-2020.

56. Munshi L., Del Sorbo L., Adhikari N.K.J. et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 2017; 14 (Suppl. 4): S280–288. DOI: 10.1513/AnnalsATS.201704-343OT.

57. Taccone P., Pesenti A., Latini R. et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009; 302 (18): 1977–1984. DOI: 10.1001/jama.2009.1614.

58. Guérin C., Reignier J., Richard J.C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013; 368 (23): 2159–2168. DOI: 10.1056/NEJMoa1214103.

59. Scaravilli V., Grasselli G., Castagna L. et al. Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: A retrospective study. J. Crit. Care. 2015; 30 (6): 1390–1394. DOI: 10.1016/j.jcrc.2015.07.008.

60. Ding L., Wang L., Wanhong M., Hangyong H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit. Care. 2020; 24: 28. DOI: 10.1186/s13054-020-2738-5.

61. Pérez-Nieto O.R., Guerrero-Gutiérrez M.A., DeloyaTomas E., Ñamendys-Silva S.A. Prone positioning combined with high-flow nasal cannula in severe noninfectious ARDS. Crit. Care. 2020; 24: 114. DOI: 10.1186/s13054-020-2821-y.

62. Sun Q., Qiu H., Huang M., Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province. Ann. Intensive Care. 2020; 10 (1): 33. DOI: 10.1186/s13613-020-00650-2.

63. Sartini C., Tresoldi M., Scarpellini P. et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA. 2020; May 15 (Published online). DOI: 10.1001/jama.2020.7861.

64. Elharrar X., Trigui Y., Dols A. et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020; May 15 (Published online). DOI: 10.1001/jama.2020.8255.

65. Kallet R.H. A comprehensive review of prone position in ARDS. Respir. Care. 2015; 60 (11): 1660–1687. DOI: 10.4187/respcare.04271.

66. Telias I., Katira B.H., Brochard L. Is the prone position helpful during spontaneous breathing in patients with COVID-19? JAMA. 2020; May 15 (Published online). DOI: 10.1001/jama.2020.8539.


Supplementary files

1. рисунки
Subject
Type Other
Download (2MB)    
Indexing metadata ▾

Review

For citations:


Avdeev S.N., Tsareva N.N., Merzhoeva Z.M., Trushenko N.V., Yaroshetskiy A.I. Practical guidance for oxygen treatment and respiratory support of patients with COVID-19 infection before admission to intensive care unit. PULMONOLOGIYA. 2020;30(2):151-163. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-2-151-163

Views: 8917


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)