Preview

PULMONOLOGIYA

Advanced search

Small respiratory passages dysfunction in bronchial asthma

https://doi.org/10.18093/0869-0189-2019-29-6-725-733

Abstract

The small respiratory passages dysfunction (SRPD) is found in the vast majority of patients with bronchial asthma (BA). The SRPD is currently recognized as the important pathogenetic feature of BA. The purpose of this review is to analyze the current scientific knowledge about the poorly studied aspects of the small respiratory passages (SRR) participation in the development of pathological process in BA, as well as the impact of small bronchial dysfunction on the clinical course, the exacerbation frequency and the disease control. The importance of SRPD diagnostics in BA patients for optimal and timely treatment is discussed. The modern methods of RPD pathology diagnostics are described; their informative use in the comparative study aspect is considered.

About the Authors

O. Yu. Kytikova
Vladivostok branch of the Federal State Budgetary Scientific Institution "Far Eastern Scientific Center of Physiology and Pathology of Breathing" – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Oksana Y. Kytikova, Candidate of Medical Sciences, researcher at the Laboratory of Rehabilitation Treatment

ul. Russkaya 73G, Vladivostok, 690105, Russia

tel.: (423) 278-82-01



M. V. Antonyuk
Vladivostok branch of the Federal State Budgetary Scientific Institution "Far Eastern Scientific Center of Physiology and Pathology of Breathing" – Research Institute of Medical Climatology and Rehabilitation Treatment; Federal State Autonomous Educational Institution of Higher Education "Far Eastern Federal University" of the Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Marina V. Antonyuk, Doctor of medical sciences, professor, head of the restoration treatment laboratory; professor of the School of Biomedicine 

ul. Russkaya 73G, Vladivostok, 690105, Russia; ul. Sukhanova 8, Vladivostok, 690091, Russia

tel.: (423) 2788-201



B. I. Gel'tser
Federal State Autonomous Educational Institution of Higher Education "Far Eastern Federal University" of the Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Boris I. Gel'tser, Doctor of Medical Sciences, Professor, Corresponding Member of Russian Academy of Sciences, Director of Clinical Medicine Department

ul. Sukhanova 8, Vladivostok, 690091, Russia

tel.: (423) 240-66-38



E. E. Mineeva
Vladivostok branch of the Federal State Budgetary Scientific Institution "Far Eastern Scientific Center of Physiology and Pathology of Breathing" – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Elena E.Mineeva, Candidate of Medical Sciences researcher at the laboratory of rehabilitation treatment

ul. Russkaya 73G, Vladivostok, 690105, Russia

tel.: (423) 278-82-01



T. A. Gvozdenko
Vladivostok branch of the Federal State Budgetary Scientific Institution "Far Eastern Scientific Center of Physiology and Pathology of Breathing" – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Tat'yana A.Gvozdenko, Doctor of medical sciences, professor of the Russian Academy of Sciences, chief research officer of the rehabilitation treatment laboratory

ul. Russkaya 73G, Vladivostok, 690105, Russia

tel.: (423) 278-82-01



References

1. Global Initiative for Asthma. Global strategy for Asthma Management and Prevention. Update 2018. Available at: https://ginasthma.org

2. Kytikova O.Yu., Gvozdenko T.A., Antonyuk M.V. [The modern aspects of the chronic bronchopulmonary diseases prevalence]. Byulleten' fiziologii i patologii dykhaniya. 2017; 64: 94–100. Available at: https://cyberleninka.ru/article/n/sovremennye-aspekty-rasprostranennosti-hronicheskih-bronholegochnyh-zabolevaniy/viewer (in Russian).

3. Belevsky A., ed. [Global strategy for the treatment and prevention of bronchial asthma (2014 revision)]. Translate from English. Мoscow: RRО; 2015 (in Russian).

4. Masoli М. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004; 59 (5): 469–478. DOI: 10.1111/j.1398-9995.2004.00526.x.

5. Sánchez-García S., Habernau Mena A., Quirce S. Biomarkers in inflammometry pediatric asthma: utility in daily clinical practice. Eur. Clin. Respir. J. 2017; 4 (1): 1356160. DOI: 10.1080/20018525.2017.1356160.

6. Asher I., Pearce N. Global burden of asthma among children. Int. J. Tuberc. Lung Dis. 2014; 18 (11): 1269–1278. DOI: 10.5588/ijtld.14.0170.

7. Chung K.F., Wenzel S.E., Brozek J.L. et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014; 43 (2): 343–373. DOI: 10.1183/09031936.00202013.

8. Soriano J.B., Abajobir A.A., Abate K.H. et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5 (9): 691–706. DOI: 10.1016/S2213-2600(17)30293-X.

9. Zeiger R.S., Schatz M., Dalal A.A. et al. Utilization and costs of severe uncontrolled asthma in a managed-care setting. J. Allergy Clin. Immunol. Pract. 2016; 4 (1): 120–129.е3. DOI: 10.1016/j.jaip.2015.08.003.

10. Vos T., Barber R.M., Bell B. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990 – 2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 386 (9995): 743–800. DOI: 10.1016/S0140-6736(15)60692-4.

11. Agustí A., Bafadhel M., Beasley R. et al. Precision medicine in airway diseases: moving to clinical practice. Eur. Respir. J. 2017; 50 (4): 1701655. DOI: 10.1183/13993003.01655-2017.

12. Traulsen L.K., Halling A., Bælum J. et al. Determinants of persistent asthma in young adults. Eur. Clin. Respir. J. 2018; 5 (1): 1478593. DOI: 10.1080/20018525.2018.1478593.

13. Price D., Fletcher M., van der Molen T. Asthma control and management in 8,000 European patients: the REcognise Asthma and LInk to Symptoms and Experience (REALISE) survey. NPJ Prim. Care Respir. Med. 2014; 24:14009. DOI: 10.1038/npjpcrm.2014.9.

14. Van Schayck O.C. Global strategies for reducing the burden from asthma. Prim. Сare Respir. J. 2013; 22 (2): 239–243. DOI: 10.4104/pcrj.2013.00052.

15. Deliu M., Yavuz T.S., Sperrin M. et al. Features of asthma which provide meaningful insights for understanding the disease heterogeneity. Clin. Exp. Allergy. 2018; 48 (1): 39–47. DOI: 10.1111/cea.13014.

16. Siroux V., Basagana X., Boudier A. et al. Identifying adult asthma phenotypes using a clustering approach. Eur. Respir. J. 2011; 38 (2): 310–317. DOI: 10.1183/09031936.00120810.

17. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 2012; 18 (5): 716–725. DOI: 10.1038/nm.2678.

18. Lötval J., Akdis C.A., Bacharier L.B. et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011; 127 (2): 355–360. DOI: 10.1016/j.jaci.2010.11.037.

19. Avdeev S.N., Aysanov Z.R., Arkhipov V.V. et al. [The agreed recommendations to justify therapy choice for bronchial asthma and chronic obstructive pulmonary disease, taking into account the disease phenotype and the role of the small respiratory passages]. Atmosfera. Pul'monologiya i allergologiya. 2013; (2): 15–26. (in Russian).

20. Lipworth B., Manoharan A., Anderson W. Unlocking the quiet zone: the small airway asthma phenotype. Lancet Respir. Med. 2014; 2 (6): 497–506. DOI: 10.1016/S2213-2600(14)70103-1.

21. Haccuria A., Van Muylem A., Malinovschi A. et al. Small airways dysfunction: the link between allergic rhinitis and allergic asthma. Eur. Respir. J. 2018; 51 (2). pii: 1701749. DOI: 10.1183/13993003.01749-2017.

22. Fassakhov R.S. [Significant role of small respiratory tracts: new possibilities of cyclesonide in therapy of bronchial asthma]. 2017; (18): 56–60. Available at: https://cyberleninka.ru/article/n/bolshaya-rol-malyh-dyhatelnyh-putey-novye-vozmozhnosti-tsiklesonida-v-terapii-bronhialnoy-astmy/viewer (in Russian).

23. van der Wiel E., ten Hacken N.H., Postma D.S., van den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J. Allergy Clin. Immunol. 2013; 131 (3): 646–657. DOI: 10.1016/j.jaci.2012.12.1567.

24. Singhania A., Rupani H., Jayasekera N. et al. Altered epithelial gene expression in peripheral airways of severe asthma. PLoS One. 2017; 12 (1): e0168680. DOI: 10.1371/journal.pone.0168680.

25. Stenberg H., Diamant Z., Ankerst J. et al. Small airway involvement in the late allergic response in asthma. Clin. Exp. Allergy. 2017; 47 (12): 1555–1565. DOI: 10.1111/cea.13036.

26. Knihtilä H., Kotaniemi-Syrjänen A., Pelkonen A.S. et al. Small airway function in children with mild to moderate asthmatic symptoms. Ann. Allergy Asthma Immunol. 2018; 121 (4): 451–457. DOI: 10.1016/j.anai.2018.07.026.

27. Contoli M., Kraft M., Hamid Q. et al. Do small airway abnormalities characterize asthma phenotypes? In search of proof. Clin. Exp. Allergy. 2012; 42 (8): 1150–1160. DOI: 10.1111/j.1365-2222.2012.03963.x.

28. Carvalho T.C., Peters J.I., Williams R.O. Influence of particle size on regional lung deposition – what evidence is there? Int. J. Pharm. 2011; 406 (1–2): 1–10. DOI: 10.1016/j.ijpharm.2010.12.040.

29. Ivancsó I., Böcskei R., Müller V. et al. Extrafine inhaled corticosteroid therapy in the control of asthma. J. Asthma Allergy. 2013; 6: 69–80. DOI: 10.2147/JAA.S25415.

30. Verbanck S. Physiological measurement of the small airways. Respiration. 2012; 84: 177–188. DOI: 10.1159/000341742.

31. Jarjour N.N., Erzurum S.C., Bleecker E.R. et al. Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2012; 185 (4): 356–362. DOI: 10.1164/rccm.201107-1317PP.

32. Desiraju K., Agrawal A. Impulse oscillometry: the state-of-art for lung function testing. Lung India. 2016; 33 (4): 410–416. DOI: 10.4103/0970-2113.184875.

33. Zysman-Colman Z., Lands L.C. Whole body plethysmography: practical considerations. Paediatr. Respir. Rev. 2016; 19: 39–41. DOI: 10.1016/j.prrv.2015.11.008.

34. Sarmand N., Gompelmann D. [Interventional bronchoscopy: What is possible and what makes sense?]. Dtsch Med. Wochenschr. 2018; 143 (15): 1097–1102. DOI: 10.1055/a-0551-2626 (in German).

35. Spahn J.D., Malka J., Szefler S.J. Current application of exhaled nitric oxide in clinical practice. J. Allergy Clin. Immunol. 2016; 138 (5): 1296–1298. DOI: 10.1016/j.jaci.2016.09.002.

36. Fuso L., Macis G., Condoluci C. et al. Impulse oscillometry and nitrogen washout test in the assessment of small airway dysfunction in asthma: Correlation with quantitative computed tomography. J. Asthma. 2018; 56 (3): 323–331. DOI: 10.1080/02770903.2018.1452032.

37. Robinson P.D., Latzin P., Verbanck S. et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur. Respir. J. 2013; 41 (3): 507–522. DOI: 10.1183/09031936.00069712.

38. Kjellberg S., Viklund E., Robinson P.D. et al. Utility of single versus multiple breath washout in adult asthma. Clin. Physiol. Funct. Imaging. 2018; 38 (6). DOI: 10.1111/cpf.12503.

39. Yang Z., Jin H., Kim J.H. Attenuation profile matching: An accurate and scan parameter-robust measurement method for small airway dimensions in low-dose CT scans. Med. Phys. 2018; 45 (9). DOI: 10.1002/mp.13074.

40. Saetta M., Di Stefano A., Rosina C. et al. Quantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am. Rev. Respir. Dis. 1991; 143 (1): 138–143. DOI: 10.1164/ajrccm/143.1.138.

41. Balzar S. Wenzel S.E., Chu H.W. Transbronchial biopsy as a tool to evaluate small airways in asthma. Eur. Respir. J. 2002; 20 (2): 254–259. DOI: 10.1183/09031936.02.00261102.

42. Anderson W.J., Zajda E., Lipworth B.J. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann. Allergy Asthma Immunol. 2012; 109 (3): 185–189.е2. DOI: 10.1016/j.anai.2012.06.022.

43. Carr T.F., Altisheh R., Zitt M. Small airways disease and severe asthma. World Allergy Organ. J. 2017; 10 (1): 20. DOI: 10.1186/s40413-017-0153-4.

44. Kim S., Nam J.K., Cho S.H. et al. Severe asthma phenotypes classified by site of airway involvement and remodeling via chest CT scan. J. Investig Allergol. Clin. Immunol. 2018; 28 (5): 312–320. DOI: 10.18176/jiaci.0265.

45. Georas S.N. All plugged up – noninvasive mucus score to assess airway dysfunction in asthma. J. Clin. Invest. 2018; 128 (3): 906–909. DOI: 10.1172/JCI99726.

46. Perez T., Chanez P., Dusser D., Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir. Med. 2013; 107 (11): 1667–1674. DOI: 10.1016/j.rmed.2013.08.009.

47. Usmani O.S., Singh D., Spinola M. et al. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir. Med. 2016; 116: 19–27. DOI: 10.1016/j.rmed.2016.05.006.

48. Bacharier L.B., Strunk R.C., Mauger D. et al. Classifying asthma severity in children: mismatch between symptoms, medication use, and lung function. Am. J. Respir. Crit. Care Med. 2004; 170 (4): 426–432.

49. Rao D.R., Gaffin J.M., Baxi S.N. et al. The utility of forced expiratory flow between 25% and 75% of vital capacity in predicting childhood asthma morbidity and severity. J. Asthma, 2012; 49 (6): 586–592. DOI: 10.3109/02770903.2012.690481.

50. Shi Y., Aledia A.S., Galant S.P., George S.C. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. J. Allergy Clin. Immunol. 2013; 131 (3): 718–723. DOI: 10.1016/j.jaci.2012.09.022.

51. Li M.J., Chang C., Wang X.H. et al. [Correlation of CT small airway measurement with clinical and inflammation factors in asthma patients]. Zhonghua Yi Xue Za Zhi. 2018; 98 (27): 2184–2188. DOI: 10.3760/cma.j.issn.0376-2491.2018.27.012 (in Chinese).

52. Alfieri V., Aiello M., Pisi R. et al. Small airway dysfunction is associated to excessive bronchoconstriction in asthmatic patients. Respir. Res. 2014; 15: 86. DOI: 10.1186/s12931-014-0086-1.

53. Cottini M., Lombardi C., Micheletto C. Small airway dysfunction and bronchial asthma control: the state of the art. Asthma Res. Pract. 2015; 1: 13. DOI: 10.1186/s40733-015-0013-3.

54. Takeda T., Oga T., Niimi A. et al. Relationship between small airway function and health status, dyspnea and disease control in asthma. Respiration. 2010; 80 (2): 120–126. DOI: 10.1159/000242113.

55. Scichilone N., Battaglia S., Taormina S. et al. Alveolar nitric oxide and asthma control in mild untreated asthma. J. Allergy Clin. Immunol. 2013; 131 (6): 1513–1517. DOI: 10.1016/j.jaci.2013.03.009.

56. Manoharan A., Anderson W.J., Lipworth J. et al. Small airway dysfunction is associated with poorer asthma control. Eur. Respir. J. 2014; 44 (5): 1353–1355. DOI: 10.1183/09031936.00082314.

57. Ong H.X., Traini D., Loo C.Y. et al. Is the cellular uptake of respiratory aerosols delivered from different devices equivalent? Eur. J. Pharm. Biopharm. 2015; 93: 320–327. DOI: 10.1016/j.ejpb.2015.04.012.

58. Leach C.L., Kuehl P.J., Chand R. et al. Characterization of respiratory deposition of fluticasone-salmeterol hydrofluoroalkane-134a and hydrofluoroalkane-134a beclomethasone in asthmatic patients. Ann. Allergy Asthma Immunol. 2012; 108 (3): 195–200. DOI: 10.1016/j.anai.2012.01.010.

59. Price D., Thomas M., Haughney J. Et al. Real-life comparison of beclometasone dipropionate as an extrafine- or larger-particle formulation for asthma. Respir. Med. 2013; 107 (7): 987–1000. DOI: 10.1016/j.rmed.2013.03.009.

60. Usmani O.S. Small-airway disease in asthma: pharmacological considerations. Curr. Opin. Pulm. Med. 2015; 21 (1): 55–67. DOI: 10.1097/MCP.0000000000000115.

61. Hoshino M. Comparison of effectiveness in ciclesonide and fluticasone propionate on small airway function in mild asthma. Allergol. Int. 2010; 59 (1): 59–66. DOI: 10.2332/allergolint.09-OA-0122.


Review

For citations:


Kytikova O.Yu., Antonyuk M.V., Gel'tser B.I., Mineeva E.E., Gvozdenko T.A. Small respiratory passages dysfunction in bronchial asthma. PULMONOLOGIYA. 2019;29(6):725-733. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-6-725-733

Views: 1299


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)