Study of oxidative stress parameters in patients with chronic obstructive pulmonary disease exacerbation
https://doi.org/10.18093/0869-0189-2019-29-6-708-715
Abstract
The purpose of the study was to perform comparative assessment of circulating diene conjugant (DC, rel. u.) and Schiff's bases (SB, rel. u.) levels, intensity of chemiluminescence (Imax, rel. lum. u.) in serum and antioxidant activity (AOA) in patients with chronic obstructive pulmonary disease (COPD) exacerbation taking into consideration broncho-obstructive disorder severity.
Materials and Methods. Patients (n = 119; mean age – 62.0 ± 4.8 years) with COPD were studied. Forced expiratory volume in 1st second (FEV1) in subjects, randomized in group 1 (n = 31), was ³ 80%, in group 2 (n = 43) – 79-50%, in group 3 (n = 45) – < 49%. The control group (n = 21) comprised of healthy non-smoking volunteers of matching age.
Results. It was established that changes in oxidative stress (OS) parameters in patients with COPD could be bidirectional depending on ventilation disorder severity. The level of SB was increased in association with disease severity increasing. High level of DC and Imax in all studied subjects was progressively decreased in association with increasing bronchial obstruction severity. There was 2-times increase of AOA at COPD exacerbation in patients of group 2 and significant decrease of this parameter in association with severe bronchial obstruction (FEV1 < 49%) compared to controls.
Conclusion. The associations between levels of studied OS parameters and bronchial obstruction degree in patients with moderate and severe broncho-obstructive disorders.
About the Authors
N. I. KubyshevaRussian Federation
Nailya I. Kubysheva, Doctor of Biological Sciences, Senior Research Fellow of Research Laboratory Medical Informatics
ul. Kremlevskaya 18, Kazan', 420008, Tatarstan Republic, Russia
tel.: (910) 796-98-38
S. K. Soodaeva
Russian Federation
Svetlana K. Soodaeva, Doctor of Medical Sciences, Professor, Head of Clinical and Experimental Biophysics Laboratory
Orekhovyy bul'var 28, Moscow, 115682, Russia
tel.: (495) 395-63-93
L. B. Postnikova
Russian Federation
Larisa B. Postnikova, Doctor of Medical Sciences, Assistant Professor; Senior Consultant Pulmonologist of the Ministry of Health of the Nizhny Novgorod Region
ul. Chernyshevskogo 22, Nizhniy Novgorod, 603000, Russia
tel.: (910) 390-64-37
E. I. Kuz'mina
Russian Federation
Elena I. Kuz'mina, Candidate of Biological Sciences, Assistant Professor in Biochemistry Department
pl. Minina i Pozharskogo 10/1, Nizhniy Novgorod, 603950, Russia
tel.: (831) 465-54-51
K. N. Kontorshchikova
Russian Federation
Klavdiya N. Kontorshchikova, Doctor of Biological Sciences, Professor, Head of Clinical Laboratory Biochemistry Diagnostics Department
pl. Minina i Pozharskogo 10/1, Nizhniy Novgorod, 603950, Russia
tel.: (904) 903-46-43
I. A. Klimanov
Russian Federation
Igor' A. Klimanov, Candidate of Medical Sciences, Senior Research Fellow in the Clinical and Experimental Biophysics Laboratory
Orekhovyy bul'var 28, Moscow, 115682, Russia
tel.: (495) 395-63-93
References
1. McGuinness A.J.A., Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J. Сlin. Med. 2017; 6 (2): pii: E21. DOI: 10.3390/jcm6020021.
2. Kubysheva N., Soodaeva S., Postnikova L. et al. Associations between indicators of nitrosative stress and levels of soluble HLA-I, CD95 molecules in patients with COPD. J. Chron. Obstruct. Pulm. Dis. 2014; 11 (6): 639–644. DOI: 10.3109/15412555.2014.898042.
3. Eliseeva T.I., Kul'pina Ya.S., Soodaeva S.K., Kubysheva N.I. [Concentration of nitrogen oxide metabolites in the expired air condensate in children with various levels of asthma control]. Sovremennye tekhnologii v meditsine. 2010; 4: 42–47. Available at: https://cyberleninka.ru/article/n/soderzhanie-metabolitov-oksida-azota-v-kondensate-vydyhaemogo-vozduha-u-detey-s-razlichnym-urovnem-kontrolya-bronhialnoy-astmy/viewer (in Russian).
4. Soodaeva S.K., Klimanov I.A., Nikitina L.Y. [Nitrosative and oxidative stresses in respiratory diseases]. Pul'monologiya. 2017; 27 (2): 262–273. DOI: 10.18093/0869-0189-2017-27-2-262-273 (in Russian).
5. Kirkham P.A., Barnes P.J. Oxidative stress in COPD. Chest. 2013; 144 (1): 266–273. DOI: 10.1378/chest.12-2664.
6. Saetta M., Turato G., Maestrelli P. et al. Cellular and structural bases of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 163 (6): 1304–1309. DOI: 10.1164/ajrccm.163.6.2009116.
7. Gor'kavaya A.Yu., Vitkina T.I., Antonyuk M.V., Yan'kova V.I. [Lipid peroxidation in exhaled breath condensate patient’s chronic obstructive pulmonary disease]. Zdorov'e. Meditsinskaya ekologiya. Nauka. 2014; 2 (56): 53–55. Available at: https://cyberleninka.ru/article/n/pokazateli-perekisnogo-okisleniya-lipidov-v-kondensate-vydyhaemogo-vozduha-u-bolnyh-hronicheskoy-obstruktivnoy-boleznyu-legkih/viewer (in Russian).
8. Rahman I., van Schadewijk A.A., Crowther A.J.L. et al. 4-Hydroxy2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2002; 166 (4): 490–495. DOI: 10.1164/rccm.2110101.
9. Kluchová Z., Petrásová D., Joppa P. et al. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol. Res. 2007; 56 (1): 51–56.
10. Montuschi P. Exhaled breath condensate analysis in patients with COPD. Clin. Chim. Acta. 2005; 356 (1-2): 22–34. DOI: 10.1016/j.cccn.2005.01.012.
11. Paredi P., Kharitonov S.A., Barnes P.J. Analysis of expired air for oxidation products. Am. J. Respir. Crit. Care Med. 2002; 166 (12, Pt 2): S31–37. DOI: 10.1164/rccm.2206012.
12. Paredi P., Kharitonov S.A., Leak D. et al. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000; 162 (2, Pt 1): 369–373. DOI: 10.1164/ajrccm.162.2.9909025.
13. Bartoli M.L., Novelli F., Costa F. et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm. 2011; 2011: ID 891752. DOI: 10.1155/2011/891752.
14. Zinellu E., Zinellu A., Fois A. G. et al. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir. Res. 2016; 17: 150. DOI: 10.1186/s12931-016-0471-z.
15. Volchegorskiy I.A., Nalimov A.G., Yarovinskiy B.G. et al. [Comparison of different approaches to determination of lipid peroxidation products in heptane-isopropanolic blood extracts]. Voprosy meditsinskoy khimii. 1989; 35 (1): 127–131 (in Russian).
16. Global Initiative Chronic Obstructive Pulmonary Disease. Global Strategy for Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2018 Report. Abailable at: https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf
17. Avci Е., Avci G.A. Important biomarkers that play a role in the chronic obstructive pulmonary disease process. J. Med. Biochem. 2018; 37 (1): 46–53. DOI: 10.1515/jomb-2017-0035.
Review
For citations:
Kubysheva N.I., Soodaeva S.K., Postnikova L.B., Kuz'mina E.I., Kontorshchikova K.N., Klimanov I.A. Study of oxidative stress parameters in patients with chronic obstructive pulmonary disease exacerbation. PULMONOLOGIYA. 2019;29(6):708-715. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-6-708-715