Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Измерение диффузионной способности легких по монооксиду углерода методом одиночного вдоха: стандарты Американского торакального и Европейского респираторного обществ (часть 2-я)


https://doi.org/10.18093/0869-0189-2019-29-3-269-291

Полный текст:


Аннотация

В данном документе приведены обновленные технические стандарты Европейского респираторного (European Respiratory Society – ERS) и Американского торакального (American Thoracic Society – ATS) обществ по измерению поглощения монооксида углерода в легких методом одиночного вдоха. Последние рекомендации были опубликованы в 2005 г. Несмотря на то, что оба термина – диффузионная способность легких (DLCO) и трансфер-фактор СО (TLCO) – одинаково характеризуют поглощение монооксида углерода в легких, в данном документе используется термин DLCO. Специалистами совместной рабочей группы ERS и ATS проведен обзор недавно опубликованной литературы по этому вопросу, а также существующих технических возможностей и аппаратуры, производимой в мире. Представленные в данном документе рекомендации являются результатом консенсуса членов рабочей группы в соответствии с доказательствами, существующими сегодня по разным аспектам измерения DLCO. Более того, в документе отражено мнение экспертов, вошедших в рабочую группу, по тем вопросам, для которых высококачественные доказательства либо отсутствуют, либо являются недостаточно полными. Основные изменения в данных технических стандартах связаны с измерением DLCO с помощью систем, использующих газоанализаторы быстрого реагирования (RGA-газоанализаторы) для монооксида углерода и индикаторного газа, которые сегодня являются наиболее распространенными из выпускаемых аппаратов для измерения DLCO. Технические усовершенствования этих новых систем позволяют улучшить измерение DLCO и определить новые стандарты измерения легочного газообмена. Дополнительные материалы к данной статье доступны на сайте https://erj.ersjournals.com.

По материалам: Graham B.L., Brusasco V., Burgos F., Cooper B.G., Jensen R., Kendrick A., MacIntyre N.R., Thompson B.R., Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49 (1): pii: 1600016. DOI: 10.1183/13993003.00016-2016.


Об авторе

статья Редакционная

Россия


Список литературы

1. Krogh M. The diffusion of gases through the lungs of man. J. Physiol. (Lond.) 1914; 49 (4): 271–300.

2. Ogilvie C.M., Forster R.E., Blakemore W.S., Morton J.W. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957; 36 (1, Pt 1): 1–17. DOI: 10.1172/JCI103402.

3. Graham B.L., Brusasco V., Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017; 49 (1): pii: 1600016. DOI: 10.1183/13993003.00016-2016.

4. MacIntyre N., Crapo R., Viegi G. et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005; 26 (4): 720–735. DOI: 10.1183/09031936.05.00034905.

5. American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique: 1995 update. Am. J. Respir. Crit. Care Med. 1995; 152 (6, Pt 1): 2185–2198. DOI: 10.1164/ajrccm.152.6.8520796.

6. Cotes J.E., Chinn D.J., Quanjer P.H. et al. Stan dardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. 1993; 16 (Suppl.): 41–52.

7. Forster R.E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol. Rev. 1957; 37 (4): 391–452. DOI: 10.1152/physrev.1957.37.4.391.

8. MacIntyre N.R. Diffusing capacity of the lung for carbon monoxide. Respir. Care. 1989; 34: 489–499.

9. Crapo R.O., Forster R.E. 2nd. Carbon monoxide diffusing capacity. Clin. Chest Med. 1989; 10 92): 187–198.

10. Wilson A.F., Hearne J., Brennen M., Alfonso R. Measurement of transfer factor during constant exhalation. Thorax. 1994; 49 (11): 1121–1126.

11. Leathart G.L. Steady-state diffusing capacity determined by a simplified method. Thorax. 1962; 17 (4): 302–307. DOI: 10.1136/thx.17.4.302.

12. Meyer M., Scheid P., Riepl G. et al. Pulmonary diffusing capacities for O2 and CO measured by a rebreathing technique. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (6): 1643–1650. DOI: 10.1152/jappl.1981.51.6. 1643.

13. Weibel E.R. Morphometric estimation of pulmonary diffusion capacity: I. Model and method. Respir. Physiol. 1971; 11 (1): 54–75. DOI: 10.1016/0034-5687(70)90102-7.

14. Forster R.E., Fowler W.S., Bates D.V., van Lingen B. The absorption of carbon monoxide by the lungs during breath-holding. J. Clin. Invest. 1954; 33 (8): 1135–1145/ DOI: 10.1172/JCI102987.

15. MacIntyre N.R., Leatherman N., Deitz J.L. et al. Distribution and uptake of helium, carbon monoxide and acetylene in the lungs during high frequency oscillatory ventilation. Respir. Physiol. 1986; 63 (2): 201–212.

16. Comroe J.H. Jr. Pulmonary diffusing capacity for carbon mon oxide (DLCO). Am. Rev. Respir. Dis. 1975; 111 (2): 225–228.

17. Roughton F.J., Forster R.E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 1957; 11 (2): 290–302. DOI: 10.1152/jappl.1957. 11.2.290.

18. Michaelson E.D., Sackner M.A., Johnson R.L. Jr. Vertical distribution of pulmonary diffusing capacity and capillary blood flow in man. J. Clin. Invest. 1973; 52 (2): 359–365. DOI: 10.1172/JCI107192.

19. MacIntyre N.R., Nadel J.A. Regional diffusing capacity in normal lungs during a slow exhalation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982; 52 (6): 1487–1492. DOI: 10.1152/jappl.1982.52.6.1487.

20. Hughes J.M., Pride N.B. In defense of the carbon monoxide transfer coefficient KCO (TL/VA). Eur. Respir. J. 2001; 17286 (2): 168–174.

21. Stam H., Versprille A., Bogaard J. The components of the carbon monoxide diffusing capacity in man dependent on alveolar volume. Bull. Eur. Physiopathol. Respir. 1983; 19 (1): 17–22.

22. Johnson D.C. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir. Med. 2000; 94 (1): 28–37. DOI: 10.1053/rmed.1999.0740.

23. Filley G.F., MacIntosh D.J., Wright G.W. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J. Clin. Invest. 1954; 33 (4): 530–539. DOI: 10.1172/JCI102923.

24. Leech J.A., Martz L., Liben A., Becklake M.R. Diffusing capacity for carbon monoxide: the effects of different durations of breath-hold time and alveolar volume and of carbon monoxide back pressure on calculated results. Am. Rev. Respir. Dis. 1985; 132 (5): 1127–1129.

25. McGrath M.W., Thomson M.L. The effect of age, body size and lung volume change on alveolar-capillary permeability and diffusing capacity in man. J. Physiol. (Lond.) 1959; 146 (3): 572–582.

26. Newth C.J., Cotton D.J., Nadel J.A. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl. Physiol. 1977; 43 (4): 617–625. DOI: 10.1152/jappl.1977.43.4.617.

27. Graham B.L., Dosman J.A., Cotton D.J. A theoretical analysis of the single breath diffusing capacity for carbon monoxide. IEEE Trans. Biomed. Eng. 1980; 27 (4): 221–227.

28. Huang Y.C., Helms M.J., MacIntyre N.R. Normal values for single exhalation diffusing capacity and pulmonary capillary blood flow in sitting, supine positions and during mild exercise. Chest. 1994; 105 (2): 501–508.

29. Stam H., Kreuzer F.J., Versprille A. Effect of lung volume and positional changes on pulmonary diffusing capacity and its components. J. Appl. Physiol. 1991; 71 (4): 1477– 1488. DOI: 10.1152/jappl.1991.71.4.1477.

30. Stokes D.L., MacIntyre N.R., Nadel J.A. Nonlinear increases in diffusing capacity during exercise by seated and supine subjects. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (4): 858–863. DOI: 10.1152/jappl.1981.51.4.858.

31. Johnson R.L. Jr., Spicer W.S., Bishop J.M., Forster R.E. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 1960; 15: 893– 902. DOI: 10.1152/jappl.1960.15.5.893.

32. Smith T.С., Rankin J. Pulmonary diffusing capacity and the capillary bed during Valsalva and Müller maneuvers. J. Appl. Physiol. 1969; 27 (6): 826–833. DOI: 10.1152/jappl.1969.27. 6.826.

33. Cotes J.E., Snidal D.P., Shepard R.H. Effect of negative intra-alveolar pressure on pulmonary diffusing capacity. J. Appl. Physiol. 1960; 15: 372–376. DOI: 10.1152/jappl.1960. 15.3.372.

34. Cotton D.J., Mink J.T., Graham B.L. Effect of high negative inspiratory pressure on single breath CO diffusing capacity. Respir. Physiol. 1983; 54 (1): 19–29.

35. Cotton D.J., Prabhu M.B., Mink J.T., Graham B.L. Effects of ventilation inhomogeneity on DLCO SB-3EQ in normal subjects. J. Appl. Physiol. 1992; 73 (6): 2623–2630. DOI: 10.1152/jappl.1992.73.6.2623.

36. Cotton D.J., Prabhu M.B., Mink J.T., Graham B.L. Effect of ventilation inhomogeneity on “intrabreath” measurements of diffusing capacity in normal subjects. J. Appl. Physiol. 1993; 75 (2): 927–932. DOI: 10.1152/jappl.1993.75. 2.927.

37. Epler G.R., Saber F.A., Gaensler E.A. Determination of severe impairment (disability) in interstitial lung disease. Am. Rev. Respir. Dis 1980; 121 (4): 647–659.

38. Viegi G., Paoletti P., Di Prediletto R. et al. Carbon monoxide diffusing capacity, other indices of lung function, and respiratory symptoms in a general population sample. Am. Rev. Respir. Dis. 1990; 141 (4, Pt 1): 1033– 1039. DOI: 10. 1164/ajrccm/141.4_Pt_1.1033.

39. Nordenfelt I., Svensson G. The transfer factor (diffusing capacity) as a predictor of hypoxemia during exercise in restrictive and chronic obstructive pulmonary disease. Clin. Physiol. 1987; 7 (5): 423–430.

40. Gelb A.F., Gold W.M., Wright R.R. et al. Physiologic diagnosis of subclinical emphysema. Am. Rev. Respir. Dis. 1973; 107 (1): 50–63.

41. Rosenberg E., Young R.C. Jr. Potential value of diffusing capacity per liter of lung volume (DL/VA) for early detection of alveolar capillary defects. Lung. 1979; 157 (1): 23–29.

42. Renzetti A.D., Bleecker E.R., Epler G.R. et al. Evaluation of impairment/disability secondary to respiratory disorders. Am. Rev. Respir. Dis. 1986; 133 (6): 1205–1209.

43. Owens G.R., Rogers R.M., Pennock B.E., Levin D. The diffusing capacity as a predictor of arterial oxygen desaturation during exercise in patients with chronic obstructive pulmonary disease. N. Engl. J. Med. 1984; 310 (19): 1218–1221. DOI: 10.1056/NEJM198405103101903.

44. Morrison N.J., Abboud R.T., Ramadan F. et al. Comparison of single breath carbon monoxide diffusing capacity and pressure-volume curves in detecting emphysema. Am. Rev. Respir. Dis 1989; 139 (5): 1179–1187. DOI: 10. 1164/ajrccm/139.5.1179.

45. Gould G.A., Redpath A.T., Ryan M. et al. Lung CT density correlates with measurements of airflow limitation and the diffusing capacity. Eur. Respir. J. 1991; 4: 141–146. Available at: https://erj.ersjournals.com/content/erj/4/2/141.full.pdf

46. Bates D. Uptake of CO in health and emphysema. Clin. Sci. 1952; 11: 21–32.

47. Clausen J.L., Zarins L.P., eds. Pulmonary function testing guidelines and controversies: equipment, methods and normal values. New York: Academic Press; 1982.

48. Quanjer P.H. Standardized lung function testing. Bull. Eur. Physiopathol. Respir. 1983; 19 (Suppl. 5): 39–44.

49. Morris A., Kanner R.E., Crapo R. et al. Clinical pulmonary function testing: a manual of uniform laboratory procedures. The 2nd Edition. Salt Lake City: Inter moun tain Thoracic Society; 1984.

50. Cotes J., ed Lung function: Assessment and Application in Medicine. The 5th Edition. London: Blackwell Scientific Publications; 1993.

51. Cotes J. Effect of variability in gas analysis on the reproducibility of the pulmonary diffusing capacity by the single breath method. Thorax. 1963; 18: 151–154. DOI: 10.1136/thx.18.2.151.

52. Chinn D.J., Naruse Y., Cotes J.E. Accuracy of gas analysis in lung function laboratories. Thorax. 1986; 41 (2): 133– 137. DOI: 10.1136/thx.41.2.133

53. Graham B.L., Mink J.T., Cotton D.J. Implementing the three-equation method of measuring single breath carbon monoxide diffusing capacity. Can. Respir. J. 1996; 3 (4): 247–257. DOI: 10.1155/1996/567450.

54. Gardner R.M., Clausen J.L., Crapo R.O. et al. Quality assurance in pulmonary function laboratories. ATS position paper. Am. Rev. Respir. Dis. 1986; 134 (3): 625–627.

55. Glissmeyer E.W., Jensen R.L., Crapo R.O. et al. Initial testing with a carbon monoxide diffusing capacity simulator. J. Invest. Med. 1999; 47: 37A.

56. Hegewald M.J., Jensen R.L., Teeter J.G. et al. Long-term intersession variability for single-breath diffusing capacity. Respiration. 2012; 84 (5): 377–384. DOI: 10.1159/0003 34699.

57. Okubo T., Lenfant C. Calibration of gas chromatograph without standardized gas mixtures. Respir. Physiol. 1968; 4 (2): 255–259.

58. Jensen R.L., Crapo R.O. Diffusing capacity: how to get it right. Respir. Care. 2003; 48 (8): 777–782. Available at: http://rc.rcjournal.com/content/48/8/777?ijkey=56e479eaa589c562ad77ade6cdc8206525bdf8ad&keytype2=tf_ipsecsha

59. Miller M.R., Hankinson J., Brusasco V. et al. Stand ardisation of spirometry. Eur. Respir. J. 2005; 26 (2): 319–338. DOI: 10.1183/09031936.05.00034805.

60. Miller M.R., Crapo R., Hankinson J. et al. General considerations for lung function testing. Eur. Respir. J. 2005; 26 (1): 153–161. DOI: 10.1183/09031936.05.00034505.

61. Kendrick A.H., Johns D.P., Leeming J.P. Infection control of lung function equipment: a practical approach. Respir. Med. 2003; 97 (11): 1163–1179. DOI: 10.1016/S0954-6111 (03)00223-3.

62. Graham B.L., Mink J.T., Cotton D.J. Effects of increasing carboxyhemoglobin on the single breath carbon monoxide diffusing capacity. Am. J. Respir. Crit. Care Med. 2002; 165 (11): 1504–1510. DOI: 10.1164/rccm.2108071.

63. Sansores R.H., Pare P.D., Abboud R.T. Acute effect of cigarette smoking on the carbon monoxide diffusing capacity of the lung. Am. Rev. Respir. Dis. 1992; 146 (4): 951–958. DOI: 10.1164/ajrccm/146.4.951.

64. Knudson R.J., Kaltenborn W.T., Burrows B. The effects of cigarette smoking and smoking cessation on the carbon monoxide diffusing capacity of the lung in asymptomatic subjects. Am. Rev. Respir. Dis. 1989; 140 (3): 645–651. DOI: 10.1164/ajrccm/140.3.645.

65. Sansores R.H., Pare P., Abboud R.T. Effect of smoking cessation on pulmonary carbon monoxide diffusing capacity and capillary blood volume. Am. Rev. Respir. Dis. 1992; 146 (4): 959–964. DOI: 10.1164/ajrccm/146.4.959.

66. Zavorsky G.S. The rise in carboxyhemoglobin from repeated pulmonary diffusing capacity tests. Respir. Physiol. Neurobiol. 2013; 186 (1): 103–108. DOI: 10.1016/j.resp.2013.01.001.

67. Wise R.A., Teeter J.G., Jensen R.L. et al. Standardization of the single-breath diffusing capacity in a multicenter clinical trial. Chest. 2007; 132 (4): 1191–1197. DOI: 10. 1378/chest.07-0455.

68. Graham B.L., Mink J.T., Cotton D.J. Improved accuracy and precision of single-breath CO diffusing capacity measurements. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981; 51 (1): 1306–1313. DOI: 10.1152/jappl.1981.51.5. 1306.

69. Graham B.L., Mink J.T., Cotton D.J. Overestimation of the single-breath carbon monoxide diffusing capacity in patients with air-flow obstruction. Am. Rev. Respir. Dis. 1984; 129 (3): 403–408.

70. Cotton D.J., Soparkar G.R., Graham B.L. Diffusing capacity in the clinical assessment of chronic airflow limitation. Med. Clin. North Am. 1996; 80 (3): 549–564.

71. Graham B.L., Mink J.T., Cotton D.J. Effect of breathhold time on DLCO (SB) in patients with airway obstruction. J. Appl. Physiol. 1985; 58 (4): 1319–1325. DOI: 10.1152/jappl.1985.58.4.1319.

72. Jones R.S., Meade F. A theoretical and experimental analysis of anomalies in the estimation of pulmonary diffusing capacity by the single breath method. Q. J. Exp. Physiol. Cogn. Med. Sci. 1961; 46: 131–143.

73. Chinn D.J., Harkawat R., Cotes J.E. Standardization of single-breath transfer factor (TLCO); derivation of breathholding time. Eur. Respir. J. 1992; 5 (4): 492–498. Available at: https://erj.ersjournals.com/content/5/4/492?ijkey=cd3a5ea09782d695a9b84a6cb9f56925911e3f46&keytype2=tf_ipsecsha.

74. Ferris B.G. Epidemiology standardization project (American Thoracic Society). Am. Rev. Respir. Dis. 1978; 118 (6, Pt 2): 1–120.

75. Huang Y.C., MacIntyre N.R. Real-time gas analysis improves the measurement of single-breath diffusing capacity. Am. Rev. Respir. Dis. 1992; 146 (4): 946–950. DOI: 10.1164/ajrccm/146.4.946.

76. Comroe J.H. Physiology of respiration: an introductory text. The 2nd Edition. Chicago: Year Book Medical Publisher; 1974.

77. Welle I., Eide G.E., Bakke P., Gulsvik A. Applicability of the single-breath carbon monoxide diffusing capacity in a Norwegian Community Study. Am. J. Respir. Crit. Care Med. 1998; 158 (6): 1745–1750. DOI: 10.1164/ajrccm.158.6.9712123.

78. Fowler W.S. Lung function studies. II. The respiratory dead space. Am. J. Physiol. 1948; 154 (3): 405–416.

79. Stuart-Andrews C.R., Kelly V.J., Sands S.A. et al. Automated detection of the phase III slope during inert gas washout testing. J. Appl. Physiol. 2012; 112 (6): 1073–1081. DOI: 10.1152/japplphysiol.00372.2011.

80. Salvador-Ong R., Dijkers E., van Steenwijk R. et al. Single-breath diffusion: comparison between helium and methane as tracer gases in COPD and healthy controls. Eur. Respir. J. 2014; 44 (Suppl. 58): P1271.

81. Cinkotai F.F., Thomson M.L. Diurnal variation in pulmonary diffusing capacity for carbon monoxide. J. Appl. Physiol. 1966; 21 (2): 539–542.

82. Frey T.M., Crapo R.O., Jensen R.L., Elliott C.G. Diurnal variation of the diffusing capacity of the lung: is it real? Am. Rev. Respir. Dis. 1987; 136 (6): 1381–1384. DOI: 10.1164/ajrccm/136.6.1381.

83. Sansores R.H., Abboud R.T., Kennell C., Haynes N. The effect of menstruation on the pulmonary carbon monoxide diffusing capacity. Am. J. Respir. Crit. Care Med. 1995; 151 (1): 381–384. DOI: 10.1164/ajrccm.152.1.7599851.

84. Peavy H.H., Summer W.R., Gurtner G. The effects of acute ethanol ingestion on pulmonary diffusing capacity. Chest. 1980; 77 (4): 488–492.

85. Simeone F., Wiese J., Glindmeyer H., Lasky J. The effects of ethanol ingestion on the accuracy of pulmonary diffusing capacity measurement. Chest. 2005; 128 (6): 3875– 3880. DOI: 10.1378/chest.128.6.3875.

86. Iversen E.T., Sørensen T., Heckscher T, Jensen J.I. Effect of terbutaline on exercise capacity and pulmonary function in patients with chronic obstructive pulmonary disease. Lung. 1999; 177 (4): 263–271. DOI: 10.1007/PL00007646.

87. Yang J., Stanton J., Wang L. et al. Effect of salbutamol on the measurement of single-breath diffusing capacity. Respirology. 2013; 18 (8): 1223–1229. DOI: 10.1111/resp.12125.

88. Baldi S., Fracchia C., Bruschi C. et al. Effect of bronchodilatation on single breath pulmonary uptake of carbon monoxide in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2006; 1 (4): 477–483.

89. Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005; 26 (3): 511–522. DOI: 10.1183/09031936.05.00035005.

90. Robinson P.D., Latzin P., Verbanck S. et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur. Respir. J. 2013; 41 (3): 507–522. DOI: 10.1183/09031936.00069712.

91. Paoletti P., Viegi G., Pistelli G. et al. Reference equations for the single-breath diffusing capacity. A cross-sectional analysis and effect of body size and age. Am. Rev. Respir. Dis. 1985; 132 (4): 806–813.

92. Knudson R.J., Kaltenbom W.T., Knudson D.E., Burrows B. The single-breath carbon monoxide diffusing capacity. Reference equations derived from a healthy nonsmoking population and effects of hematocrit. Am. Rev. Respir. Dis. 1987; 135 (4): 805–811.

93. Miller A., Thornton J.С., Warshaw R. et al. Single breath diffusing capacity in a representative sample of the population of Michigan, a large industrial state. Predicted values, lower limits of normal, and frequencies of abnormality by smoking history. Am. Rev. Respir. Dis. 1983; 127 (3): 270–277.

94. Crapo R.O., Morris A.H. Standardized single breath normal values for carbon monoxide diffusing capacity. Am. Rev. Respir. Dis. 1981; 123 (2): 185–189.

95. Morris A.H., Crapo R.O. Standardization of computation of single-breath transfer factor. Bull. Eur. Physiopath. Respir. 1985; 21 (2): 183–189.

96. Horstman M.J., Mertens F.W., Schotborg D. et al. Comparison of total-breath and single-breath diffusing capacity in healthy volunteers and COPD patients. Chest. 2007; 131 (1): 237–244. DOI: 10.1378/chest.06-1115.

97. Graham B.L., Buchanan P.R., Withy S.J., Harris E.A. Data acquisition from a multiplex, quadruple mass spectrometer. Clin. Phys. Physiol. Meas. 1985; 6 (1): 17–25.

98. Hughes J.M., Pride N.B. Examination of the carbon monoxide diffusing capacity (DLCO) in relation to its KCO and VA components. Am. J. Respir. Crit. Care Med. 2012; 186 (2): 132–139. DOI: 10.1164/rccm.201112-2160CI.

99. Cotton D.J., Graham B.L. The usefulness of KCO is questionable. Am. J. Respir. Crit. Care Med. 2013; 187 (6): 660. DOI: 10.1164/ajrccm.187.6.660.

100. Chinn D.J., Cotes J.E., Flowers R. et al. Transfer factor (diffusing capacity) standardized for alveolar volume: validation, reference values and applications of a new linear model to replace KCO (TL/VA). Eur. Respir. J. 1996; 9 (6): 1269–1277. DOI: 10.1183/09031936.96.09061269.

101. Stam H., Splinter T.A., Versprille A. Evaluation of diffusing capacity in patients with a restrictive lung disease. Chest. 2000; 117 (3): 752–757. DOI: 10.1378/chest.117.3.752.

102. Verbanck S., Schuermans D., Van Malderen S. et al. The effect of conductive ventilation heterogeneity on diffusing capacity measurement. J. Appl. Physiol. 2008; 104 (4): 1094–1100. DOI: 10.1152/japplphysiol.00917.2007.

103. Thompson B.R., Prisk G.K., Peytonc P. et al. Inhomogeneity of ventilation leads to unpredictable errors in measured DLCO. Respir. Physiol. Neurobiol. 2005; 146 (2-3): 205–214. DOI: 10.1016/j.resp.2004.12.001.

104. Buist A.S., Ross B.B. Quantitative analysis of the alveolar plateau in the diagnosis of early airway obstruction. Am. Rev. Respir. Dis. 1973; 108 (5): 1078–1087.

105. Cotton D.J., Mink J.T., Graham B.L. Nonuniformity of diffusing capacity from small alveolar gas samples is increased in smokers. Can. Respir. J. 1998; 5 (2): 101–108. DOI: 10.1155/1998/324920.

106. Wanger J., Irvin C. Comparability of pulmonary function results from 13 laboratories in a metropolitan area. Respir. Care. 1991; 36 (12): 1375–1382.

107. Gaensler E.A., Smith A.A. Attachment for automated single breath diffusing capacity measurement. Chest. 1973; 63 (2): 136–145. DOI: 10.1378/chest.63.2.136.

108. Punjabi N.M., Shade D., Patel A.M., Wise R.A. Measurement variability in single-breath diffusing capacity of the lung. Chest. 2003; 123 (4): 1082–1089. DOI: 10. 1378/chest.123.4.1082.

109. Hathaway E.H., Tashkin D.P., Simmons M.S. Intraindividual variability in serial measurements of DLCO and alveolar volume over one year in eight healthy subjects using three independent measuring systems. Am. Rev. Respir. Dis. 1989; 140 (6): 1818–1822. DOI: 10.1164/ajrccm/140.6.1818.

110. Cooper B.G., Butterfield A.K. Quality control in lung function testing. ERS Buyers’ Guide to Respiratory Care Products. 2009: 24–38. Available at: http://www.clinicalscience.org.uk/wp-content/uploads/2015/01/quality_control_in_lung_function_testing1.pdf

111. Viegi G., Baldi S., Begliomini E. et al. Single breath diffusing capacity for carbon monoxide: effects of adjustment for inspired volume dead space, carbon dioxide, hemoglobin and carboxyhemoglobin. Respiration. 1998; 65 (1): 56–62. DOI: 10.1159/000029227.

112. Mohsenifar Z., Brown H.V., Schnitzer B. et al. The effect of abnormal levels of hematocrit on the single breath diffusing capacity. Lung. 1982; 160 (6): 325–330.

113. Clark E.H., Woods R.L., Hughes J.M. Effect of blood transfusion on the carbon monoxide transfer factor of the lung in man. Clin. Sci. Mol. Med. 1978; 54: 627–631. Available at: https://pdfs.semanticscholar.org/f4cb/f235af6fb62a9a75fbd1517800adb063e033.pdf

114. Cotes J.E., Dabbs J.M., Elwood P.C. et al. Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusing capacity) and ventilation and cardiac frequency during submaximal exercise. Clin. Sci. 1972; 42 (3): 325–335.

115. Marrades R.M., Diaz O., Roca J. et al. Adjustment of DLCO for hemoglobin concentration. Am. J. Respir. Crit. Care Med. 1997; 155 (1): 236–241. DOI: 10.1164/ajrccm.155.1.9001318.

116. Hollowell J.G., Van Assendelft O.W., Gunter E.W. et al. Hematological and iron-related analytes–Reference data for persons aged 1 year and over: United States, 1988– 1994. National Center for Health Statistics. Vital Health Stat. 2005; 11 (247). Available at: https://www.cdc.gov/nchs/data/series/sr_11/sr11_247.pdf

117. Kanner R.E., Crapo R.O. The relationship between alveolar oxygen tension and the single-breath carbon monoxide diffusing capacity. Am. Rev. Respir. Dis. 1986; 133 (4): 676–678.

118. Gray C., Zamel N., Crapo R.O. Effect of a simulated 3,048 meter altitude on the single-breath transfer factor. Bull. Eur. Physiopathol. Respir. 1986; 22 (5): 429–431.

119. Coburn R.F., Forster R.E., Kane P.B. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J. Clin. Invest. 1965; 44 (11): 1899–1910. DOI: 10.1172/JCI105296.

120. Viegi G., Paoletti P., Carrozzi L. et al. CO diffusing capacity in a general population sample: relationship with cigarette smoking and air-flow obstruction. Respiration. 1993; 60 (3): 155–161. DOI: 10.1159/000196192.

121. Mohsenifar Z., Tashkin D.P. Effect of carboxyhemoglobin on the single breath diffusing capacity: derivation of an empirical correction factor. Respiration. 1979; 37 (4): 185–191. DOI: 10.1159/000194025.

122. Frey T.M., Crapo R.O., Jensen R.L. et al. Adjustment of DLCO for varying COHb, and alveolar PO2 using a theoretical adjustment equation. Respir. Physiol. 1990; 81 (3): 303–311.

123. Gaensler E.A., Cadigan J.B. Jr, Ellicott M.F. et al. A new method for rapid precise determination of carbon monoxide in blood. J. Lab. Clin. Med. 1957; 49 (6): 945–957.

124. Henderson M., Apthorp G.H. Rapid method for estimation of carbon monoxide in blood. Br. Med. J. 1960; 2: 1853–1854. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098603/pdf/brmedj03056-0043.pdf

125. Jones R.H., Ellicott M.F., Cadigan J.B., Gaensler E.A. The relationship between alveolar and blood carbon monoxide concentrations during breathholding; simple estimation of COHb saturation. J. Lab. Clin. Med. 1958; 51 (4): 553–564.

126. Quanjer P.H., Stanojevic S., Cole T.J. et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012; 40 (6): 1324–1343. Available at: https://erj.ersjournals.com/content/40/6/1324?ijkey=a3193e5d11d4cfd267210d45f4344f69d02186d5&keytype2=tf_ipsecsha

127. Thompson B.R., Johns D.P., Bailey M. et al. Prediction equations for single breath diffusing capacity (TLCO) in a middle aged caucasian population. Thorax. 2008; 63 (10): 889–893. Available at: https://thorax.bmj.com/content/thoraxjnl/63/10/889.full.pdf

128. Koopman M., Zanen P., Kruitwagen C.L. et al. Reference values for paediatric pulmonary function testing: the Utrecht dataset. Respir. Med. 2011; 105 (1): 15–23. DOI: 10.1016/j.rmed.2010.07.020.

129. Garcia-Rio F., Dorgham A., Galera R. et al. Prediction equations for single-breath diffusing capacity in subjects aged 65 to 85 years. Chest. 2012; 142 (1): 175–184. DOI: 10.1378/chest.11-2021.

130. Kim Y.J., Hall G.L., Christoph K. et al. Pulmonary diffusing capacity in healthy Caucasian children. Pediatr. Pulmonol. 2012; 47 (5): 469–475. DOI: 10.1002/ppul.21564.

131. Thomas A., Hanel B., Marott J. et al. The single-breath diffusing capacity of CO and NO in healthy children of European descent. PLoS One. 2014; 9: e113177.

132. Michailopoulos P., Kontakiotis T., Spyratos D. et al. Reference equations for static lung volumes and TLCO from a population sample in northern Greece. Respiration. 2015; 89 (3): 226–234. DOI: 10.1159/000371469.

133. Verbanck S., Van Muylem A., Schuermans D. et al. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults. Eur. Respir. J. 2016; 47 (1): 166–176. DOI: 10.1183/13993003.00695-2015.


Дополнительные файлы

Для цитирования: Редакционная с. Измерение диффузионной способности легких по монооксиду углерода методом одиночного вдоха: стандарты Американского торакального и Европейского респираторного обществ (часть 2-я).  Пульмонология. 2019;29(3):269-291. https://doi.org/10.18093/0869-0189-2019-29-3-269-291

For citation: Editorial a. Measurement of Single-Breath Diffusing Capacity of the Lungs for Carbon Monoxide: new standards of European Respiratory Society and American Thoracic Society (рart 2). Russian Pulmonology. 2019;29(3):269-291. (In Russ.) https://doi.org/10.18093/0869-0189-2019-29-3-269-291

Просмотров: 46

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)