Preview

Пульмонология

Расширенный поиск

Особенности кровообращения в легких у плода и новорожденного

https://doi.org/10.18093/0869-0189-2012-0-4-89-94

Аннотация

Особенности кровообращения в легких у плода и новорожденного.

Об авторе

Х. М. Марков
ФГБУ "Научный центр здоровья детей" РАМН
Россия

д. м. н., проф.

119991, Москва, Ломоносовский пр-т, 2. Тел.: (499) 241-53-89.



Список литературы

1. Reeves J.T., Taylor A.E. Pulmonary hemodynamics and fluid exchange in the lung during exercise. In: Handbook of physiology exercise: Regulation and integration of multiple systems. Rowell L.B., Shepherd J.T. (Eds.). 1996. 585–613.

2. Coggins M.P., Bloch K. Nitric oxide in the pulmonary vasculature. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1877–1885.

3. Balanos G.M., Talbot N.A., Keith L. et al. Humaitpulmonary vascular response to 4h of hypercapnia and hypocapnia. J. Appl. Physiol. 2003; 94: 1543–1551.

4. Yamamoto Y., Nakano H., Ide H. et al. Role of airway NO in the regulation of pulmonary circulation by carbon dioxide. J. Appl. Physiol. 2001; 91 (3): 1121–1130.

5. Girgis R.E., Champion H.C., Diette G. et al. Decreased exhaled NO in pulmonary arterial hypertension. Respir. Crit. Care Med. 2005; 172: 352–357.

6. Budhiraja R., Tuder R.M., Hassoun P.M. Endothelial dysfunction in pulmonary hypertension. Circulation 2004; 109: 159–165.

7. Mercus D., Houweling В., Zar-banoui A., Dunker D.J. Interaction between prostanoids and NO in regulation of systemic, pulmonary and coronary vascular tone in exercising swine. Am. J. Physiol. 2004; 286: H1114–H1123.

8. Merkus D., Houweling В., Zarbanoui A., Dunker D.J. Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation. Cardiovasc. Res. 2003; 59: 745–754.

9. Kelly L.K., Wedgwood S., Steinhorn R.H., Black S.M. NO decreases endotheiin-1 secretion through the activation of soluble guanylate cy-clase. Am. J. Physiol. 2004; 286: L984–L991.

10. Wort S.J., Woods M., Warner T.D. et al. Cyclooxygenase-2 acts as an endogenous brake on endothelin-1 release by human pulmonary artery smooth musele cells: implication for pulmonary hypertension. Mol. Pharmacol. 2002; 62: 1147–1153.

11. Fike C., Kaplowitz M. Chronic hypoxia decreases NO production by endothelial NO synthase in developmental lang. Am. J. Physiol. 1998; 274: L517–L526.

12. Morin P.C., Egan E.A., Ferguson W., Lundgren C.E. Development of pulmonary vascular response to oxygen. Am. J. Physiol. 1988; 254: H542–H546.

13. Storme L., Rairigh R.L., Parker T.A. et al. Acute infrauterine pulmonary hypertension impairs endothelium-dependent vasodilator in the ovine fetus. Pediatr. Res. 1999; 45: 575–581.

14. Cassin S. Role of prostaglandins, thromboxanes and leukotrienes in the control of pulmonary circulation in the fetus and newborn. Semin. Perinatol. 1987; 11: 53–63.

15. Ivy D., Lecrase Т., Parker T. et al. Developmental ahanges in endotheiin expression and activity in the ovine fetal lung. Am. J. Physiol. 2000; 278: L785–L793.

16. Kawai N., Bloch D.B., Filippov G. et al. eNOS gene expression is regulated during lung development. Am. J. Physiol. 1995; 268: L589–L595.

17. Saqueton C.B., Miller R.B., Porter V.A. et al. NO causes perynatal pulmonary vasodilation through K+-channal activation and intracellular Ca2+ release. Am. J. Physiol. 1999; 276: L925–L932.

18. Theis J.G., Coccani F. ATP-gated potassium channel activity of pulmonary resiststence vessels in the lamb. Can. J. Physiol. Pharmacol. 1997; 75: 1241–1248.

19. Gau Y., Zhou H., Raj J.U. Heterogenety in the role of NO in pulmonary arteries and veins of full term fetal lambs. Am. J. Physiol. 1995; 268: H1586–H1598.

20. Shaul P.W., Farrar M.A., Magness R.R. Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am. J. Physiol. 1993; 265: H1056–H1063.

21. Rairigh R.L., Storme L., Parker T.A. et al. iNOS inhibition attenuates shear stress-induced pulmonary vasodilation in the ovine fetus. Am. J. Physiol. 1999; 276: L513–L521.

22. Brannon T.S., MacRitchie A.N., Jamarillo M.A. et al. Ontogeny of COX-1 and COX-2 gen expressin in the lung. Am. J. Physiol. 1998; 274: L66–L71.

23. Chaul P.W., Farrar M.A., Magness R.R. Oxygen modulation of pulmonary arterial synthesis is developmentally regulated. Am. J. Physiol. 1993; 265: H621–H628.

24. Ornfield D., Saqueton C, Porter V. et al. Voltage-K+ channel activity in pulmonary vasculature is developmentally regulated. Am. J. Physiol. 2000; 278: L1297–L1304.

25. Clement de Ciety S., Deceli M., Tod M. et al. Developmental changes in synthesis of and responsiveness to PGI2 and PGE2 in hypoxiqlamb lungs. Can. J. Physiol. Pharmacol. 1998; 76: 764–771.

26. Fineman J.R., Wong J., Morin F.C. et al. Chronic NO-inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J. Clin. Invest. 1994; 93: 2675–2683.

27. Storme L., Rairing P.L., Parker T.A. et al. In vivo evidence for a myogenic response in the fetal pulmonary circulation. Pediatr. Res. 1999; 45: 425–431.


Рецензия

Для цитирования:


Марков Х.М. Особенности кровообращения в легких у плода и новорожденного. Пульмонология. 2012;(4):89-94. https://doi.org/10.18093/0869-0189-2012-0-4-89-94

For citation:


Markov Kh.M. Pulmonary blood flow in fetus and newborns. PULMONOLOGIYA. 2012;(4):89-94. (In Russ.) https://doi.org/10.18093/0869-0189-2012-0-4-89-94

Просмотров: 874


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)