Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD
https://doi.org/10.18093/0869-0189-2018-28-2-169-176
Abstract
About the Authors
O. N. TitovaRussian Federation
O. N. Kuzubova
Russian Federation
E. S. Lebedeva
Russian Federation
E. A. Surkova
Russian Federation
T. N. Preobrazhenskaya
Russian Federation
I. V. Dvorakovskaya
Russian Federation
References
1. Clerici C., Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 296 (3): 267–274. DOI: 10.1152/ajplung.90528.2008.
2. Rey S., Semenza G.L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 2010; 86 (2): 236–242. DOI: 10.1093/cvr/cvq045.
3. Lee S.H., Lee S.H., Kim C.H. et al. Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis. Clin. Biochem. 2014; 47 (7-8): 552–559. DOI: 10.1016/j.clinbiochem.2014.01.012.
4. Hoenderdos K., Lodge K.M., Hirs R.A. et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax. 2016; 71 (11): 1030–1038. DOI: 10.1136/thoraxjnl-2015-207604.
5. Polke M., Seiler F., Lepper P.M. et al. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. J. Innate Immun. 2017; 23 (4): 373–380. DOI: 10.1177/1753425917698032.
6. Ito Y., Ahmad A., Kewley E. et al. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro. Am. J. Respir. Cell. Mol. Biol. 2011; 45 (5): 938–945. DOI: 10.1165/rcmb.2011-0052OC.
7. Zhong H., Willard M., Simons J. NS398 reduces hypoxia-inducible factor (HIF)-1alpha and HIF-1 activity: multiple-level effects involving cyclooxygenase-2 dependent and independent mechanisms. Int. J. Cancer. 2004; 112 (4): 585–595. DOI: 10.1002/ijc.20438.
8. Bruning U., Fitzpatrick S.F., Frank T. et al. NFκB and HIF display synergistic behaviour during hypoxic inflammation. Cell. Mol. Life Sci. 2012; 69 (8): 1319–1329. DOI: 10.1007/s00018-011-0876-2.
9. Lebedeva E.S., Kuzubova N.A., Danilov L.N., et al. An experimental model of chronic obstructive pulmonary disease. Byulleten’ eksperimental’noy biologii i meditsiny. 2012; 152 (5): 659–663 DOI: 10.1007/s10517-012-1601-3 (in Russian).
10. Gao W., Li L., Wang Y. et al. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015; 20 (5): 722–729. DOI: 10.1111/resp.12542.
11. Yanagisawa H., Hashimoto M., Minagawa S. et al. Role of IL-17A in murine models of COPD airway disease. Am. J. Phisiol. Lung Cell. Mol. Physiol. 2017; 312 (1): 122–130. DOI: 10.1152/ajplung.00301.2016.
12. Lyamina S.V., Malyshev I.Yu. Surfactant protein D in health and in lung diseases. Rossiyskiy meditsinskiy zhurnal. 2012; (1): 50–55 (in Russian).
13. Levänen B., Glader P., Dahlén B. et al. Impact of tobacco smoking on cytokine signaling via interleukin-17A in the peripheral airways. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 2109–2116. DOI: 10.2147/COPD.S99900.
14. Pappu R., Rutz S., Ouyang W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol. 2012; 33 (7): 343–349. DOI: 10.1016/j.it.2012.02.008.
15. Duan M.C., Zhang J.Q., Liang Y. et al. Infiltration of IL-17-producing T cells and Treg cells in a mouse model of smoke-induced emphysema. Inflammation. 2016; 39 (4): 1334–1344. DOI: 10.1007/s10753-016-0365-8.
16. Yadava K., Bollyky P., Lawson M.A. The formation and function of tertiary lymphoid follicles in chronic pulmonary inflammation. Immunology. 2016; 149 (3): 262–269. DOI: 10.1111/imm.12649.
17. Chen X., Cao J., Chen B.Y. [Interleukin-17 expression and clinical significance in the lung tissue of patients with stable chronic obstructive pulmonary disease]. Zhonghua Yi Xue Za Zhi. 2016; 96 (26): 2086–2090. DOI: 10.3760/cma.j.issn.0376-2491.2016.26.010 (in Chinese).
18. Roos A.B., Sethi S., Nikota J. et al. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015; 192 (4): 428–437. DOI: 10.1164/rccm.201409-1689OC.
19. Zhang M., Fei X., Zhang G.Q. et al. Role of neutralizing anti-murine interleukin-17A monoclonal antibody on chronic ozone-induced airway inflammation in mice. Biomed. Pharmacother. 2016; 83: 247–256. DOI: 10.1016/j.biopha.2016.06.041.
20. Xu F., Xu Z., Zhang R. et al. Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B. Respir. Res. 2008; 9: 16. DOI: 10.1186/1465-9921-9-16.
21. Zago M., Rico de Souza A., Hecht E. et al. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol. Lett. 2014; 226 (2): 107–116. DOI: 10.1016/j.toxlet.2014.01.020.
22. Gu W., Song L., Li X.M. et al. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci. Rep. 2015; 5: 8733. DOI: 10.1038/srep08733.
23. Sheridan J.A., Zago M., Nair P. et al. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respir. Res. 2015; 16: 54. DOI: 10.1186/s12931-015-0214-6.
24. He X.Y., Shi X.Y., Yuan H.B. et al. Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1α. Injury. 2012; 43 (3): 279–283. DOI: 10.1016/j.injury.2011.05.037.
25. Jiang H., Zhu Y.S., Xu H. et al. Inflammatory stimulation and hypoxia cooperatively activate HIF-1(alpha) in bronchial epithelial cells: involvement of PI3K and NF-(kappa)B. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 298 (5): 660–669. DOI: 10.1152/ajplung.00394.2009.
26. Lu D., Li N., Yao X., Zhou L. Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn. J. Basic. Med. Sci. 2017; 17 (1): 47–53. DOI: 10.17305/bjbms.2016.1579.
27. Huang M., Wang L., Chen J. et al. Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery. Int. J. Oncol. 2016; 48 (5): 2144–2154. DOI: 10.3892/ijo.2016.3421.
28. Eurlings I.M., Reynaert N.L., van den Beucken T. et al. Cigarette smoke extract induces a phenotypic shift in epithelial cells; involvement of HIF1α in mesenchymal transition. PLoS One. 2014; 9 (10): e107757. DOI: 10.1371/journal.pone.0107757.
29. Li H., Wu Q., Xu L. et al. Increased oxidative stress and disrupted small intestinal tight junctions in cigarette smoke-exposed rats. Mol. Med. Rep. 2015; 11 (6): 4639–4644. DOI: 10.3892/mmr.2015.3234.
30. Liu X.H., Kirschenbaum A., Lu M. et al. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem. 2002; 277 (51): 50081–50086. DOI: 10.1074/jbc.M201095200.
31. Roh G.S., Yi C.O., Cho Y.J. et al. Anti-inflammatory effects of celecoxib in rat lungs with smoke-induced emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299 (2): 184–191. DOI: 10.1152/ajplung.00303.2009.
Review
For citations:
Titova O.N., Kuzubova O.N., Lebedeva E.S., Surkova E.A., Preobrazhenskaya T.N., Dvorakovskaya I.V. Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD. PULMONOLOGIYA. 2018;28(2):169-176. (In Russ.) https://doi.org/10.18093/0869-0189-2018-28-2-169-176