Противовоспалительный и регенеративный эффект подавления гипоксийного сигналинга на модели хронической обструктивной болезни легких


https://doi.org/10.18093/0869-0189-2018-28-2-169-176

Полный текст:


Аннотация

Цель. Оценка противовоспалительного и регенеративного эффекта предотвращения активации гипоксийного сигналинга на модели хронической обструктивной болезни легких (ХОБЛ) путем ингибирования циклооксигеназы-2 (СОХ-2)-зависимого провоспалительного каскада. Материалы и методы. При помощи экспозиций диоксидом азота (NO2, 30–40 мг / м3) в течение 90 дней у крыс создана модель ХОБЛ. В качестве ингибитора СОХ-2 применялся целекоксиб. С 30-го дня крысам 1-й группы через пищеводный зонд вводился целекоксиб (25 мг / кг); животные 2-й группы (контроль) получали 0,9%-ный NaCl. Интактные крысы составили 3-ю группу. Животные выводились из опыта после 60 и 90 дней экспозиции NO2 путем цервикальной дислокации. При этом выполнялась цитография бронхоальвеолярной лаважной жидкости (БАЛЖ), определялось содержание COX-2, гипоксия-индуцибельного фактора-1a (HIF-1a), интерлейкина (IL)-17, сурфактантного протеина D (SP-D) методом ELISA. Выполнено гистологическое исследование легочной ткани. Результаты. Показано, что после 90-дневной экспозиции NO2 в БАЛЖ контрольных особей содержание нейтрофилов в 7,7 раза превышало интактное значение. Достоверно возрастало содержание провоспалительных медиаторов СОХ-2, HIF-1α, IL-17, а уровень SP-D снижался. Применение целекоксиба сопровождалось нормализацией цитологического профиля БАЛЖ и уменьшением содержания СОХ-2, HIF-1α, IL-17, что свидетельствовало о снижении активности гипоксийного сигналинга и воспалительного процесса. Значительно возрастала концентрация SP-D, что можно рассматривать как следствие восстановления морфологической структуры бронхоальвеолярного эпителия, о чем свидетельствовали данные гистологического исследования легочной ткани. Заключение. При ингибировании СОХ-2 отмечен супрессивный эффект на HIF-1α-сигналинг и уменьшение легочного воспаления. Полученные результаты подтверждают функционально-регуляторную связь HIF-1α и СОХ-2-сигнальных каскадов, которая может быть терапевтической мишенью для предотвращения прогрессирования воспаления и ремоделирования дыхательных путей при ХОБЛ.


Об авторах

О. Н. Титова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия
д. м. н., директор Научно-исследовательского института пульмонологии


Н. А. Кузубова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия
д. м. н., заместитель директора Научно-исследовательского института пульмонологии


Е. С. Лебедева
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия
к. б. н., ведущий научный сотрудник Научно-исследовательского института пульмонологии


Е. А. Суркова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия
к. б. н., старший научный сотрудник Научно-методического центра по молекулярной медицине


Т. Н. Преображенская
Федеральное государственное бюджетное военное образовательное учреждение высшего образования «Военно-медицинская академия имени С. М. Кирова» Министерства обороны Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
Россия
к. б. н., доцент Федерального государственного бюджетного военного образовательного учреждения высшего образования «Военно-медицинская академия имени С.М.Кирова» Министерства обороны Российской Федерации, доцент Федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет» Министерства образования и науки Российской Федерации


И. В. Двораковская
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П.Павлова» Министерства здравоохранения Российской Федерации
Россия
д. м. н., ведущий научный сотрудник Научно-исследовательского института пульмонологии


Список литературы

1. Clerici C., Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 296 (3): 267–274. DOI: 10.1152/ajplung.90528.2008.

2. Rey S., Semenza G.L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 2010; 86 (2): 236–242. DOI: 10.1093/cvr/cvq045.

3. Lee S.H., Lee S.H., Kim C.H. et al. Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis. Clin. Biochem. 2014; 47 (7-8): 552–559. DOI: 10.1016/j.clinbiochem.2014.01.012.

4. Hoenderdos K., Lodge K.M., Hirs R.A. et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax. 2016; 71 (11): 1030–1038. DOI: 10.1136/thoraxjnl-2015-207604.

5. Polke M., Seiler F., Lepper P.M. et al. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. J. Innate Immun. 2017; 23 (4): 373–380. DOI: 10.1177/1753425917698032.

6. Ito Y., Ahmad A., Kewley E. et al. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro. Am. J. Respir. Cell Mol. Biol. 2011; 45 (5): 938–945. DOI: 10.1165/rcmb.2011-0052OC.

7. Zhong H., Willard M., Simons J. NS398 reduces hypoxia-inducible factor (HIF)-1alpha and HIF-1 activity: multiple-level effects involving cyclooxygenase-2 dependent and independent mechanisms. Int. J. Cancer. 2004; 112 (4): 585–595. DOI: 10.1002/ijc.20438.

8. Bruning U., Fitzpatrick S.F., Frank T. et al. NFκB and HIF display synergistic behaviour during hypoxic inflammation. Cell. Mol. Life Sci. 2012; 69 (8): 1319–1329. DOI: 10.1007/s00018-011-0876-2.

9. Лебедева Е.С., Кузубова Н.А., Данилов Л.Н. и др. Воспроизведение в эксперименте хронической обструктивной болезни легких. Бюллетень экспериментальной биологии и медицины. 2012; 152 (5): 659–663. DOI: 10.1007/s10517-012-1601-3.

10. Gao W., Li L., Wang Y. et al. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015; 20 (5): 722–729. DOI: 10.1111/resp.12542.

11. Yanagisawa H., Hashimoto M., Minagawa S. et al. Role of IL-17A in murine models of COPD airway disease. Am. J. Phisiol. Lung Cell Mol. Physiol. 2017; 312 (1): 122–130. DOI: 10.1152/ajplung.00301.2016.

12. Лямина С.В., Малышев И.Ю. Сурфактантный белок D в норме и при заболеваниях легких. Российский медицинский журнал. 2012; (1): 50–55.

13. Levänen B., Glader P., Dahlén B. et al. Impact of tobacco smoking on cytokine signaling via interleukin-17A in the peripheral airways. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 2109–2116. DOI: 10.2147/COPD.S99900.

14. Pappu R., Rutz S., Ouyang W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol. 2012; 33 (7): 343–349. DOI: 10.1016/j.it.2012.02.008.

15. Duan M.C., Zhang J.Q., Liang Y. et al. Infiltration of IL-17-producing T cells and Treg cells in a mouse model of smoke-induced emphysema. Inflammation. 2016; 39 (4): 1334–1344. DOI: 10.1007/s10753-016-0365-8.

16. Yadava K., Bollyky P., Lawson M.A. The formation and function of tertiary lymphoid follicles in chronic pulmonary inflammation. Immunology. 2016; 149 (3): 262–269. DOI: 10.1111/imm.12649.

17. Chen X., Cao J., Chen B.Y. [Interleukin-17 expression and clinical significance in the lung tissue of patients with stable chronic obstructive pulmonary disease]. Zhonghua Yi Xue Za Zhi. 2016; 96 (26): 2086–2090. DOI: 10.3760/cma.j.issn.0376-2491.2016.26.010 (in Chinese).

18. Roos A.B., Sethi S., Nikota J. et al. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015; 192 (4): 428–437. DOI: 10.1164/rccm.201409-1689OC.

19. Zhang M., Fei X., Zhang G.Q. et al. Role of neutralizing anti-murine interleukin-17A monoclonal antibody on chronic ozone-induced airway inflammation in mice. Biomed. Pharmacother. 2016; 83: 247–256. DOI: 10.1016/j.biopha.2016.06.041.

20. Xu F., Xu Z., Zhang R. et al. Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B. Respir. Res. 2008; 9: 16. DOI: 10.1186/1465-9921-9-16.

21. Zago M., Rico de Souza A., Hecht E. et al. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol. Lett. 2014; 226 (2): 107–116. DOI: 10.1016/j.toxlet.2014.01.020.

22. Gu W., Song L., Li X.M. et al. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci. Rep. 2015; 5: 8733. DOI: 10.1038/srep08733.

23. Sheridan J.A., Zago M., Nair P. et al. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression. Respir. Res. 2015; 16: 54. DOI: 10.1186/s12931-015-0214-6.

24. He X.Y., Shi X.Y., Yuan H.B. et al. Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1α. Injury. 2012; 43 (3): 279–283. DOI: 10.1016/j.injury.2011.05.037.

25. Jiang H., Zhu Y.S., Xu H. et al. Inflammatory stimulation and hypoxia cooperatively activate HIF-1{alpha} in bronchial epithelial cells: involvement of PI3K and NF-{kappa}B. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 298 (5): 660–669. DOI: 10.1152/ajplung.00394.2009.

26. Lu D., Li N., Yao X., Zhou L. Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn. J. Basic. Med. Sci. 2017; 17 (1): 47–53. DOI: 10.17305/bjbms.2016.1579.

27. Huang M., Wang L., Chen J. et al. Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery. Int. J. Oncol. 2016; 48 (5): 2144–2154. DOI: 10.3892/ijo.2016.3421.

28. Eurlings I.M., Reynaert N.L., van den Beucken T. et al. Cigarette smoke extract induces a phenotypic shift in epithelial cells; involvement of HIF1α in mesenchymal transition. PLoS One. 2014; 9 (10): e107757. DOI: 10.1371/journal.pone.0107757.

29. Li H., Wu Q., Xu L. et al. Increased oxidative stress and disrupted small intestinal tight junctions in cigarette smoke-exposed rats. Mol. Med. Rep. 2015; 11 (6): 4639–4644. DOI: 10.3892/mmr.2015.3234.

30. Liu X.H., Kirschenbaum A., Lu M. et al. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem. 2002; 277 (51): 50081–50086. DOI: 10.1074/jbc.M201095200.

31. Roh G.S., Yi C.O., Cho Y.J. et al. Anti-inflammatory effects of celecoxib in rat lungs with smoke-induced emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299 (2): 184–191. DOI: 10.1152/ajplung.00303.2009.


Дополнительные файлы

Для цитирования: Титова О.Н., Кузубова Н.А., Лебедева Е.С., Суркова Е.А., Преображенская Т.Н., Двораковская И.В. Противовоспалительный и регенеративный эффект подавления гипоксийного сигналинга на модели хронической обструктивной болезни легких.  Пульмонология. 2018;28(2):169-176. https://doi.org/10.18093/0869-0189-2018-28-2-169-176

For citation: Titova O.N., Kuzubova O.N., Lebedeva E.S., Surkova E.A., Preobrazhenskaya T.N., Dvorakovskaya I.V. Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD. Russian Pulmonology. 2018;28(2):169-176. (In Russ.) https://doi.org/10.18093/0869-0189-2018-28-2-169-176

Просмотров: 206

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)