Клинические рекомендации по диагностике первичной цилиарной дискинезии


https://doi.org/10.18093/0869-0189-2017-27-6-705-731

Полный текст:


Аннотация

Диагноз первичной цилиарной дискинезии (ПЦД) обычно подтверждается с помощью стандартных, но сложных и дорогостоящих исследований. Однако в большинстве случаев диагностика остается трудной, несмотря на множество сложных тестов, при этом «золотой стандарт» диагностики ПЦД отсутствует. В связи с этим Рабочей группой при поддержке Европейского респираторного общества разработаны и опубликованы клинические рекомендации, в которых содержатся доказательные данные о диагностике ПЦД, особенно с учетом новых сведений и необходимости точной диагностики для больных, включенных в рандомизированные клинические исследования. В клинических рекомендациях освещены отдельные вопросы клинического ведения лиц с ПЦД, содержатся систематический обзор литературы и оценка доказательств по системе Градации рекомендаций, анализа, разработки и оценки (Grading of Recommendations, Assessment, Development and Evaluation – GRADE). Обсуждаются клинические проявления заболевания, особенности измерения назального оксида азота; анализируются частота и паттерн биения ресничек с использованием высокоскоростного видеомикроскопического анализа, трансмиссионной электронной микроскопии, генотипирования и иммунофлюоресцентного анализа. Для разработки алгоритма диагностики ПЦД, предназначенного для надежного подтверждения либо исключения диагноза, использован модифицированный метод Дельфи. В клинических рекомендациях предложен набор критериев качества диагностических тестов для ПЦД для будущих исследований. Дополнительные материалы представлены на сайте erj.ersjournals.com 

  • По материалам: Lucas J.S., Barbato A., Collins S.A., Goutaki M., Behan L., Caudri D., Dell Sh., Eber E., Escudier E., Hirst R.A., Hogg C., Jorissen M., Latzin Ph., Legendre M., Leigh M.W., Midulla F., Nielsen K.G., Omran H., Papon J.-F., Pohunek P., Redfern B., Rigau D., Rindlisbacher B., Santamaria F., Shoemark A., Snijders D., Tonia Th., Titieni A., Walker W.T., Werner C., Bush A., Kuehni C.E. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017; 49 (1): 1601090. DOI: 10.1183/13993003.01090-2016.

 


Об авторе

статья редакционная

Россия


Список литературы

1. Lucas J.S., Leigh M.W. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur. Respir. J. 2014; 44 (6): 1418–1422. DOI: 10.1183/09031936.00175614.

2. Barbato A., Frischer T., Kuehni C.E. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 2009; 34 (6): 1264–1276. DOI: 10.1183/09031936.00176608.

3. Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI: 10.1183/09031936.00001010.

4. Strippoli M.P., Frischer T., Barbato A. et al. Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur. Respir. J. 2012; 39 (6): 1482–1491. DOI: 10.1183/09031936.00073911.

5. Schünemann H.J., Oxman A.D., Brozek J. et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008; 336: 1106–1110. DOI: 10.1136/bmj.39500.677199.AE.

6. Guyatt G.H., Oxman A.D., Kunz R. et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J. Clin. Epidemiol. 2011; 64 (4): 395–400. DOI: 10.1016/j.jclinepi.2010.09.012.

7. Behan L., Dunn Galvin A., Rubbo B. et al. Diagnosing primary ciliary dyskinesia; an international patient perspective. Eur. Respir. J. 2016; 48 (4): 1096–1107. DOI: 10.1183/13993003.02018-2015.

8. Balshem H., Helfand M., Schünemann H.J. et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011; 64 (4): 401–406. DOI: 10.1016/j.jclinepi.2010.07.015.

9. Andrews J.C., Schünemann H.J., Oxman A.D. et al. GRADE guidelines: 15. Going from evidence to recommendation: determinants of a recommendation’s direction and strength. J. Clin. Epidemiol. 2013; 66 (7): 726–735. DOI: 10.1016/j.jclinepi.2013.02.003.

10. Behan L., Dimitrov B.D., Kuehni C.E. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (4): 1103–1112. DOI: 10.1183/13993003.01551-2015.

11. Shapiro A.J., Chawla K.K., Baker B.R. et al. Nasal nitric oxide and clinical characteristics of patients with heterotaxy: comparison to primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2011; 183: A1209. DOI: 10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A1209.

12. Leigh M.W., Ferkol T.W., Davis S.D. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 2016; 13 (8): 1305–1313. DOI: 10.1513/AnnalsATS.201511-748OC.

13. Noll E.M., Rieger C.H.L., Hamelmann E., Nüßlein T.G. Questionnaire to preselect patients with a high probability of primary ciliary dyskinesia. Klin. Padiatr. 2011; 223 (1): 22–26. DOI: 10.1055/s-0030-1263136.

14. Chin G.Y., Karas D.E., Kashgarian M. Correlation of presentation and pathologic condition in primary ciliary dyskinesia. Arch. Otolaryngol. Head Neck. Surg. 2002; 128 (11): 1292–1294. DOI:10.1001/archotol.128.11.1292.

15. Beucher J., Chambellan A., Segalen J., Deneuville E. Primary ciliary dyskinesia: a retrospective review of clinical and paraclinical data. Rev. Mal. Respir. 2011; 28 (7): 856–863. DOI: 10.1016/j.rmr.2011.02.014.

16. Pifferi M., Bush A., Michelucci A. et al. Mannose-binding lectin 2 gene polymorphism and lung damage in primary ciliary dyskinesia. Pediatr. Pulmonol. 2015; 50 (2): 179–186. DOI: 10.1002/ppul.23026.

17. Mullowney T., Manson D., Kim R. et al. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014; 134 (6): 1160–1166.

18. Goutaki M., Meier A.B., Halbeisen F.S. et al. Clinical manifestations in primary ciliary dyskinesia: a systematic review and meta-analysis. Eur. Respir. J. 2016; 48 (4): 1081–1095. DOI: 10.1183/13993003.00736-2016.

19. Walker W.T., Jackson C.L., Lackie P.M. et al. Nitric oxide in primary ciliary dyskinesia. Eur. Respir. J. 2012; 40 (4): 1024–1032. DOI: 10.1183/09031936.00176111.

20. Collins S.A., Gove K., Walker W. et al. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur. Respir. J. 2014; 44 (6): 1589–1599. DOI: 10.1183/09031936.00088614.

21. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005; 171 (8): 912–930. DOI: 10.1164/rccm.200406-710ST.

22. Beydon N., Chambellan A., Alberti C. et al. Technical and practical issues for tidal breathing measurements of nasal nitric oxide in children. Pediatr. Pulmonol. 2015; 50 (12): 1374–1382. DOI: 10.1002/ppul.23167.

23. Marthin J.K., Nielsen K.G. Hand-held tidal breathing nasal nitric oxide measurement – a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia. PLoS One. 2013; 8 (2): e57262. DOI: 10.1371/journal.pone.0057262.

24. Marthin J.K., Nielsen K.G. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia. Eur. Respir. J. 2011; 37 (3): 559–565. DOI: 10.1183/09031936.00032610.

25. Leigh M.W., Hazucha M.J., Chawla K.K. et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann. Am. Thorac. Soc. 2013; 10 (6): 574–581. DOI: 10.1513/AnnalsATS.201305-110OC.

26. Jackson C.L., Behan L., Collins S.A. et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 837–848. DOI: 10.1183/13993003.00749-2015.

27. Harris A., Bhullar E., Gove K. et al. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias. BMC Pulm. Med. 2014; 14: 18. DOI: 10.1186/1471-2466-14-18.

28. Struben V.M., Wieringa M.H., Mantingh C.J. et al. Nasal NO: normal values in children age 6 through to 17 years. Eur. Respir. J. 2005; 26 (3): 453–457. DOI: 10.1183/09031936.05.00015205.

29. Adams P.S., Tian X., Zahid M. et al. Establishing normative nasal nitric oxide values in infants. Respir. Med. 2015; 109 (9): 1126–1130. DOI: 10.1016/j.rmed.2015.07.010.

30. Olbrich H., Cremers C., Loges N.T. et al. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am. J. Hum. Genet. 2015; 97 (4): 546–554. DOI: 10.1016/j.ajhg.2015.08.012.

31. Knowles M.R., Ostrowski L.E., Leigh M.W. et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am. J. Respir. Crit. Care Med. 2014; 189 (6): 707–717. DOI: 10.1164/rccm.201311-2047OC.

32. Kott E., Legendre M., Copin B. et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am. J. Hum. Genet. 2013; 93 (3): 561–570. DOI: 10.1016/j.ajhg.2013.07.013.

33. Afzelius B.A. A human syndrome caused by immotile cilia. Science. 1976; 193 (4250): 317–319. DOI: 10.1126/science.1084576.

34. Rayner C.F., Rutman A., Dewar A. et al. Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. Am. J. Respir. Crit. Care Med.1996; 153 (3): 1123–1129. DOI: 10.1164/ajrccm.153.3.8630555.

35. Chapelin C., Coste A., Reinert P. et al. Incidence of primary ciliary dyskinesia in children with recurrent respiratory diseases. Ann. Otol. Rhinol. Laryngol. 1997; 106 (10, Pt 1): 854–858. DOI: 10.1177/000348949710601008.

36. Santamaria M.M., de Santi G., Grillo F. Ciliary motility at light microscopy: a screening technique for ciliary defects? Acta. Paediatr. 1999; 88 (8): 853–857.

37. Jorissen M., Willems T., Van der Schueren B. et al. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta. Otorhinolaryngol. Belg. 2000; 54 (3): 343–356.

38. Toskala-Hannikainen E., Haataja J., Shirasaki H. et al. Culture of cells harvested with nasal brushing: a method for evaluating ciliary function. Rhinology. 2005; 43 (2): 121–124.

39. Pifferi M., Montemurro F., Cangiotti A.M. et al. Simplified cell culture method for the diagnosis of atypical primary ciliary dyskinesia. Thorax. 2009; 64 (12): 1077–1081. DOI: 10.1136/thx.2008.110940.

40. Hirst R.A., Jackson C.L., Coles J.L. et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One. 2014; 9 (2): e89675. DOI: 10.1371/journal.pone.0089675.

41. Chilvers M.A., O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax. 2000; 55 (4): 314–317. DOI: 10.1136/thorax.55.4.314.

42. Papon J.F., Bassinet L., Cariou-Patron G. et al. Quantitative analysis of ciliary beating in primary ciliary dyskinesia: a pilot study. Orphanet. J. Rare Dis. 2012; 7: 78. DOI: 10.1186/1750-1172-7-78.

43. Friedman N.R., Pachigolla R., Deskin R.W. et al. Optimal technique to diagnose primary ciliary dyskinesia. Laryngoscope. 2000; 110 (9): 1548–1551. DOI: 10.1097/00005537-200009000-00026.

44. Chilvers M.A., Rutman A., O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 2003; 112 (3): 518–524.

45. Raidt J., Wallmeier J., Hjeij R. et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur. Respir. J. 2014; 44 (6): 1579–1588. DOI: 10.1183/09031936.00052014.

46. Pifferi M., Bush A., Montemurro F. et al. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis. Eur. Respir. J. 2013; 41 (4): 960–965. DOI: 10.1183/09031936.00039412.

47. Jorissen M., Willems T., Van der Schueren B. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture. Acta. Otolaryngol. 2000; 120 (2): 291–295.

48. Stannard W.A., Chilvers M.A., Rutman A.R. et al. Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2010; 181 (4): 307–314. DOI: 10.1164/rccm.200903-0459OC.

49. Schwabe G.C., Hoffmann K., Loges N.T. et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 2008; 29 (2): 289–298. DOI: 10.1002/humu.20656.

50. Sturgess J.M., Turner J.A. Ultrastructural pathology of cilia in the immotile cilia syndrome. Perspect. Pediatr. Pathol. 1984; 8 (2): 133–161.

51. Rutland J., Dewar A., Cox T. et al. Nasal brushing for the study of ciliary ultrastructure. J. Clin. Pathol. 1982; 35 (3): 357–359. DOI: 10.1136/jcp.35.3.357.

52. Pifferi M., Caramella D., Cangiotti A.M. et al. Nasal nitric oxide in atypical primary ciliary dyskinesia. Chest. 2007; 131 (3): 870–873. DOI: 10.1378/chest.06-2472.

53. Hirst R.A., Rutman A., Williams G. et al. Ciliated air-liquid cultures as an aid to diagnostic testing of primary ciliary dyskinesia. Chest. 2010; 138 (6): 1441–1447. DOI: 10.1378/chest.10-0175.

54. Papon J.F., Coste A., Roudot-Thoraval F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2010; 35 (5): 1057–1063. DOI: 10.1183/09031936.00046209.

55. Olm M.A., Kögler J.E., Macchione M. et al. Primary ciliary dyskinesia: evaluation using cilia beat frequency assessment via spectral analysis of digital microscopy images. J. Appl. Physiol. 2011; 111 (1): 295–302. DOI: 10.1152/japplphysiol.00629.2010.

56. Shoemark A., Dixon M., Corrin B. et al. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J. Clin. Pathol. 2012; 65 (3): 267–271. DOI: 10.1136/jclinpath-2011-200415.

57. Munkholm M., Nielsen K.G., Mortensen J. Clinical value of measurement of pulmonary radioaerosol mucociliary clearance in the work up of primary ciliary dyskinesia. EJNMMI Res. 2015; 5: 39. DOI: 10.1186/s13550-015-0118-y.

58. Olin J.T., Burns K., Carson J.L. et al. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr. Pulmonol. 2011; 46 (5): 483–488. DOI: 10.1002/ppul.21402.

59. Boon M., Smits A., Cuppens H. et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet. J. Rare Dis. 2014; 9: 11. DOI: 10.1186/1750-1172-9-11.

60. Escudier E., Couprie M., Duriez B. et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am. J. Respir. Crit. Care Med. 2002; 166 (9): 1257–1262. DOI: 10.1164/rccm.2111070.

61. Funkhouser W.K., Niethammer M., Carson J.L. et al. A new tool improves diagnostic test performance for transmission em evaluation of axonemal dynein arms. Ultrastruct. Pathol. 2014; 38 (4): 248–255. DOI: 10.3109/01913123.2013.815081.

62. Smith C.M., Hirst R.A., Bankart M.J. et al. Cooling of cilia allows functional analysis of the beat pattern for diagnostic testing. Chest. 2011; 140 (1): 186–190. DOI: 10.1378/chest.10-1920.

63. Shoemark A., Hogg C. Electron tomography of respiratory cilia. Thorax. 2013; 68 (2): 190–191. DOI: 10.1136/thoraxjnl-2012-202938.

64. Wallmeier J., Al-Mutairi D.A., Chen C.T. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 2014; 46 (6): 646–651. DOI: 10.1038/ng.2961.

65. Olbrich H., Häffner K., Kispert A. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 2002; 30 (2): 143–144. DOI: 10.1038/ng817.

66. Pennarun G., Escudier E., Chapelin C. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 1999; 65 (6): 1508–1519. DOI:10.1086/302683.

67. Loges N.T., Olbrich H., Fenske L. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 2008; 83 (5): 547–558. DOI: 10.1016/j.ajhg.2008.10.001.

68. Duriez B., Duquesnoy P., Escudier E. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA. 2007; 104 (9): 3336–3341. DOI: 10.1073/pnas.0611405104.

69. Mazor M., Alkrinawi S., Chalifa-Caspi V. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 2011; 88 (5): 599–607. DOI: 10.1016/j.ajhg.2011.03.018.

70. Hjeij R., Onoufriadis A., Watson C.M. et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am. J. Hum. Genet. 2014; 95 (3): 257–274. DOI: 10.1016/j.ajhg.2014.08.005.

71. Onoufriadis A., Paff T., Antony D. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 92 (1): 88–98. DOI: 10.1016/j.ajhg.2012.11.002.

72. Onoufriadis A., Shoemark A., Munye M.M. et al. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J. Med. Genet. 2014; 51 (1): 61–67. DOI: 10.1136/jmedgenet-2013-101938.

73. Panizzi J.R., Becker-Heck A., Castleman V.H. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 2012; 44 (6): 714–719. DOI: 10.1038/ng.2277.

74. Tarkar A., Loges N.T., Slagle C.E. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 2013; 45 (9): 995–1003. DOI: 10.1038/ng.2707.

75. Knowles M.R., Ostrowski L.E., Loges N.T. et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 2013; 93 (4): 711–720. DOI: 10.1016/j.ajhg.2013.07.025.

76. Horani A., Ferkol T.W., Shoseyov D. et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013; 8 (3): e59436. DOI: 10.1371/journal.pone.0059436.

77. Omran H., Kobayashi D., Olbrich H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008; 456 (7222): 611–616. DOI: 10.1038/nature07471.

78. Duquesnoy P., Escudier E., Vincensini L. et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2009; 85 (6): 890–896. DOI: 10.1016/j.ajhg.2009.11.008.

79. Loges N.T., Olbrich H., Becker-Heck A. et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 2009; 85 (6): 883–889. DOI: 10.1016/j.ajhg.2009.10.018.

80. Austin-Tse C., Halbritter J., Zariwala M.A. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 93 (4): 672–686. DOI: 10.1016/j.ajhg.2013.08.015.

81. Mitchison H.M., Schmidts M., Loges N.T. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 2012; 44 (4): 381–389. DOI: 10.1038/ng.1106.

82. Zariwala M.A., Gee H.Y., Kurkowiak M. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 2013; 93 (2): 336–345. DOI: 10.1016/j.ajhg.2013.06.007.

83. Horani A., Druley T.E., Zariwala M.A. et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 2012; 91 (4): 685–693. DOI: 10.1016/j.ajhg.2012.08.022.

84. Olbrich H., Schmidts M., Werner C. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 2012; 91 (4): 672–684. DOI: 10.1016/j.ajhg.2012.08.016.

85. Jeanson L., Copin B., Papon J.-F. et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am. J. Hum. Genet. 2015; 97 (1): 153–162. DOI: 10.1016/j.ajhg.2015.05.004.

86. Frommer A., Hjeij R., Loges N.T. et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am. J. Respir. Cell. Mol. Biol. 2015; 53 (4): 563–573. DOI: 10.1165/rcmb.2014-0483OC.

87. Wirschell M., Olbrich H., Werner C. et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat. Genet. 2013; 45 (3): 262–268. DOI: 10.1038/ng.2533.

88. Horani A., Brody S.L., Ferkol T.W. et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013; 8 (8): e72299. DOI: 10.1371/journal.pone.0072299.

89. Merveille A.C., Davis E.E., Becker-Heck A. et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2011; 43 (1): 72–78. DOI: 10.1038/ng.726.

90. Becker-Heck A., Zohn I.E., Okabe N. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 2011; 43 (1): 79–84. DOI: 10.1038/ng.727.

91. Moore A., Escudier E., Roger G. et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J. Med. Genet. 2006; 43 (4): 326–333. DOI: 10.1136/jmg.2005.034868.

92. Budny B., Chen W., Omran H. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 2006; 120 (2): 171–178. DOI: 10.1007/s00439-006-0210-5.

93. Boon M., Wallmeier J., Ma L. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 2014; 5: 4418. DOI: 10.1038/ncomms5418.

94. Fliegauf M., Olbrich H., Horvath J. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2005; 171 (12): 1343–1349. DOI: 10.1164/rccm.200411-1583OC.

95. Hornef N., Olbrich H., Horvath J. et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am. J. Respir. Crit. Care Med. 2006; 174 (2): 120–126. DOI: 10.1164/rccm.200601-084OC.

96. Knowles M.R., Leigh M.W., Carson J.L. et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012; 67 (5): 433–441. DOI: 10.1136/thoraxjnl-2011-200301.

97. Dougherty G.W., Loges N.T., Klinkenbusch J.A. et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am. J. Respir. Cell. Mol. Biol. 2016; 55 (2): 213–224. DOI: 10.1165/rcmb.2015-0353OC.

98. Hjeij R., Lindstrand A., Francis R. et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 2013; 93 (2): 357–367. DOI: 10.1016/j.ajhg.2013.06.009.

99. Kott E., Duquesnoy P., Copin B. et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2012; 91 (5): 958–964. DOI: 10.1016/j.ajhg.2012.10.003.

100. Kurkowiak M., Ziętkiewicz E., Greber A. et al. ZMYND10 – mutation analysis in slavic patients with primary ciliary dyskinesia. PLoS One. 2016; 11 (1): e0148067. DOI: 10.1371/journal.pone.0148067.

101. Diggle C.P., Moore D.J., Mali G. et al. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet. 2014; 10 (9): e1004577. DOI: 10.1371/journal.pgen.1004577.

102. Onoufriadis A., Shoemark A., Schmidts M. et al. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum. Mol. Genet. 2014; 23 (13): 3362–3374. DOI: 10.1093/hmg/ddu046.

103. Antony D., Becker-Heck A., Zariwala M.A. et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 2013; 34 (3): 462–472. DOI: 10.1002/humu.22261.

104. Zietkiewicz E., Loges N.T., Wittmer M. et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr. Pulmonol. 2013; 48 (4): 352–363. DOI: 10.1002/ppul.22632.

105. Zariwala M.A., Leigh M.W., Ceppa F. et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am. J. Respir. Crit. Care Med. 2006; 174 (8): 858–866. DOI: 10.1164/rccm.200603-370OC.

106. Amirav I., Wallmeier J., Loges N.T. et al. Systematic analysis of CCNO variants in a defined population: implications for clinical phenotype and differential diagnosis. Hum. Mutat. 2016; 37 (4): 396–405. DOI: 10.1002/humu.22957.

107. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17 (5): 405–424. DOI: 10.1038/gim.2015.30.

108. Lucas J.S., Adam E.C., Goggin P.M. et al. Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD. Hum. Mutat. 2012; 33 (3): 495–503. DOI: 10.1002/humu.22001.

109. Davis S.D., Ferkol T.W., Rosenfeld M. et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am. J. Respir. Crit. Care Med. 2015; 191 (3): 316–324. DOI: 10.1164/rccm.201409-1672OC.

110. Marshall C.R., Scherer S.W., Zariwala M.A. et al. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015; 5 (8): 1775–1781. DOI: 10.1534/g3.115.019851.

111. Djakow J., Svobodová T., Hrach K. et al. Effectiveness of sequencing selected exons of DNAH5 and DNAI1 in diagnosis of primary ciliary dyskinesia. Pediatr. Pulmonol. 2012; 47 (9): 864–875. DOI: 10.1002/ppul.22520.

112. Failly M., Bartoloni L., Letourneau A. et al. Mutations in DNAH5 account for only 15% of a non-preselected cohort of patients with primary ciliary dyskinesia. J. Med. Genet. 2009; 46 (4): 281–286. DOI: 10.1136/jmg.2008.061176.

113. Blanchon S., Legendre M., Copin B. et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J. Med. Genet. 2012; 49 (6): 410–416. DOI: 10.1136/jmedgenet-2012-100867.

114. Claustres M., Kožich V., Dequeker E. et al. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic). Eur. J. Hum. Genet. 2014; 22 (2): 160–170. DOI: 10.1038/ejhg.2013.125.

115. Matthijs G., Souche E., Alders M. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 2016; 24 (1): 2–5. DOI: 10.1038/ejhg.2015.226.

116. Omran H., Loges N.T. Immunofluorescence staining of ciliated respiratory epithelial cells. Methods Cell. Biol. 2009; 91: 123–133. DOI: 10.1016/S0091-679X(08)91007-4.

117. Werner C., Lablans M., Ataian M. et al. An international registry for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 849–859. DOI: 10.1183/13993003.00776-2015.

118. Rutjes A.W., Reitsma J.B., Coomarasamy A. et al. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol. Assess. 2007; 11 (50): iii.


Дополнительные файлы

Для цитирования: редакционная с. Клинические рекомендации по диагностике первичной цилиарной дискинезии.  Пульмонология. 2017;27(6):705-731. https://doi.org/10.18093/0869-0189-2017-27-6-705-731

For citation: editotial a. Clinical guidelines for diagnosis of primary ciliary dyskinesia. Russian Pulmonology. 2017;27(6):705-731. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-6-705-731

Просмотров: 306

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 0869-0189 (Print)
ISSN 2541-9617 (Online)