Volumetric capnography: abilities in practical pulmonology
https://doi.org/10.18093/0869-0189-2017-27-1-65-70
Abstract
The aim of this review was to analyze abilities of a novel diagnostic method intended to measure the lung function. Volumetric capnography is one of the most promising tools for assessing pulmonary function. This method reflects CO2 elimination pattern at the exhaled air volume. Changes in CO2 portion at the tidal volume are related to the integrated evaluation of the respiratory function and could be expressed as the following parameters: emphysema index, the dead space volume, phases 2 and 3 slopes, etc. Possible use of the volumetric capnography for diagnosis of chronic obstructive pulmonary disease, asthma, emphysema, and other respiratory diseases is discussed in the article. This method is simple, non-invasive, and safe. Diagnostic value of the volumetric capnography needs further investigation in order to implement this method in clinical practice.
About the Authors
V. N. AbrosimovRussian Federation
Doctor of Medicine, Professor, Head of Department of Therapy, Faculty of Postgraduate Training and Family Medicine
Yu. Yu. Byalovskiy
Russian Federation
Doctor of Medicine, Professor, Head of Department of Pathophysiology
S. V. Subbotin
Russian Federation
Postgraduate student, Department of Therapy, Faculty of Postgraduate Training and Family Medicine
I. B. Ponomareva
Russian Federation
Candidate of Medicine, Assistant Lecturer, Department of Therapy, Faculty of Postgraduate Training and Family Medicine
References
1. Gravenstein J.S., Jaffe M.B., Gravenstein N., Paulus D.A., eds. Capnography. Cambridge: Cambridge Univ. Press; 2011.
2. Jaffe M.B. Volumetric Capnography – The Next Advance in CO2 Monitoring. Respironics Inc.; 2012.
3. Byalovskiy Yu.Yu., Abrosimov V.N. Capnography in general medical practice. Ryazan': RyazGMU; 2006 (in Russian).
4. Elam J.O., Brown E.L., Ten Pas R.H. Carbon dioxide homeostasis during anesthesia. Instrumentation. Anesthesiology. 1955; 16: 876–885.
5. Fletcher R. The single breath test for carbon dioxide (Thesis). Sweden: Lund; 1980.
6. Veronez L., Pereira M.C., da Silva S.M. et al. Volumetric capnography for the evaluation of chronic airways diseases. Intern. J. COPD. 2014; 9: 983–989. DOI: 10.2147/COPD.
7. Kalenda Z. Mastering Ifrared Capnography. Netherlands: Kerckebosh-Zeist; 1989.
8. Tusman G., Scandurra A., Bohm S.H. et al. Model fitting of volumetric capnograms improves calculations of airway deadspace and slope of phase III. J. Clin. Monit. Comput. 2009; 23 (4): 197–206. DOI: 10.1007/s10877-009-9182-z.
9. Kallett R.H., Daniel B.M., Garcia O., Matthay M.A. Accuracy of physiologic deadspace measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir. Care 2005; 50 (4): 462–427.
10. Verschuren F., Liistro G., Coffeng R. et al. Volumetric capnography as a screening test for pulmonary embolism in the emergency department. Chest. 2004; 125 (5): 841–850.
11. Verschuren F., Heinonen E., Clause D. et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004 (11); 30: 2129–2130. DOI: 10.1007/s00134-004-2444-9.
12. Tusman G., Suarez-Sipmann F., Böhm S.H. et al. Monitoring deadspace during recruitment and PEEP titration in an experimental model. Intens. Care Med. 2006; 32 (11): 1863–1871. DOI: 10.1007/s00134-006-0371-7.
13. Cheifetz I.M., Myers T.R. Respiratory therapies in the critical setting: should every mechanically ventilated patient be monitored with capnography from intubation to extubation? Respir. Care. 2007; 52 (4): 423–438.
14. Tusman G., Bohm, S.H., Suarez Sipmann F., Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth. Analg. 2004; 98 (6): 1604–1609.
15. Gustafsson P.M., Ljungberg H.K., Kjellman B. Peripheral airway involvement in asthma assessed by single-breath SF6 and He washout. Eur. Respir. J. 2003; 21 (6): 1033–1039.
16. Arnold J.H., Stenz R.I., Grenier B., Thompson J.E. Singlebreath CO2 analysis as a predictor of lung volume change in a model of acute lung injury. Crit. Care Med. 2000; 28 (3): 760–764.
17. Kline J.A., Israel E.G., Michelson E.A. et al. Diagnostic accuracy of a bedside D-dimerassay and alveolar deadspace measurement for rapid exclusion of pulmonary embolism. JAMA. 2001; 285 (6): 761–768.
18. Verschuren F., Heinonen E., Clause D. et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004; 30 (11): 2129–2132. DOI: 10.1007/s00134-004-2444-9.
19. Moreira M.M., Terzi R.G., Carvalho C.H. et al. Alveolar dead space and capnographic variables before and after thrombolysis in patients with acute pulmonary embolism. Vasc. Health Risk Manag. 2009; 5 (1): 9–12.
20. Moreira M.M., Terzi R.G., Paschoal I.A. et al. Thrombolysis in massive pulmonary embolism based on the volumetric capnography. Arq. Bras. Cardiol. 2010; 95 (4): е97–е99.
21. Romero P.V., Lucangelo U., Lopez Aguilar J. et al. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation. Eur. Respir. J. 1997; 10: 1309–1315.
22. Koulouris N.G., Latsi P., Stavrou E. et al. Unevenness of ventilation assessed by the expired CO(2) gas volume versus V(T) curve in asthmatic patients. Respir. Physiol. Neurobiol. 2004; 140 (3): 293–300. DOI: 10.1016/j.resp.2004.01.005.
23. Almeida C.C., Almeida-Júnior A.A., Ribeiro M.Â. et al. Volumetric capnography to detect ventilation inhomogeneity in children and adolescents with controlled persistent asthma. J. Pediatr. (Rio J). 2011; 87 (2): 163–168.
24. Kars A.H., Goorden G., Stijnen T. et al. Does phase II of the expiratory P C02 versus volume curve have diagnostic value in emphysema patients? Eur. Respir. J. 1995; 8 (1): 86–92.
25. Romerо P.V., Rodriguez B., de Oliveira D. et al. Volumetric capnography and chronic obstructive pulmonary disease staging. Int. J. COPD. 2007; 2 (3): 381–391.
26. Qi G.S., Gu W.C., Yang W.L. et al. The ability of volumetric capnography to distinguish between chronic obstructive pulmonary disease patients and normal subjects. Lung. 2014; 192 (5): 661–668. DOI:10.1007/s00408-014-9615-4.
27. Ribeiro M.Â., Silva M.T., Ribeiro J.D. et al. Volumetric capnography as a tool to detect early peripheric lung obstruction in cystic fibrosis patients. J. Pediatr. (Rio J.). 2012; 88 (6): 509–517. DOI:10.2223/JPED.2233.
28. Ponomareva I.B., and Subbotin S.V. Abilities of volumetric capnography to measure lung function in patients with COPD. Nauka molodykh (Eruditio Juvenium). 2016; 1: 67–73 (in Russian).
29. Abrosimov V.N., and Ponomareva I.B. Abilities of volumetric capnography to define COPD phenotype. In: Dyspnea and dyspnea-associated syndromes. Collected scientific papers. Ryazan'; 2014: 126–130 (in Russian).
30. Dutrieue B., Vanholsbeeck F., Verbank S., Paiva M.A. Human acinar structure for simulation of realistic alveolar plateau slopes. J. Appl. Physiol. 2000; 89 (5):1859–1867.
31. Ream R.S., Screiner M.S., Neff J.D. et al. Volumetric capnography in children. Influence of growth on the alveolar plateau slope. Anesthesiology. 1995; 82 (1): 64–73.
32. Stenz R.I., Grenier В.Т., Thompson J.E., Arnold J.H. Single breath C02 analysis as a predictor of lung volume in a healthy animal model during controlled ventilation. Crit. Care Med. 1998; 26 (8): 1409–1413.
33. Olsson K., Greiff L., Karlefors F. et al. Changes in airway dead space in response to methacholine provocation in normal subjects. Clin. Physiol. 1999; 19 (5): 426–432.
Review
For citations:
Abrosimov V.N., Byalovskiy Yu.Yu., Subbotin S.V., Ponomareva I.B. Volumetric capnography: abilities in practical pulmonology. PULMONOLOGIYA. 2017;27(1):65-70. (In Russ.) https://doi.org/10.18093/0869-0189-2017-27-1-65-70